Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(22): 4803-4817.e13, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37683634

RESUMEN

Patescibacteria, also known as the candidate phyla radiation (CPR), are a diverse group of bacteria that constitute a disproportionately large fraction of microbial dark matter. Its few cultivated members, belonging mostly to Saccharibacteria, grow as epibionts on host Actinobacteria. Due to a lack of suitable tools, the genetic basis of this lifestyle and other unique features of Patescibacteira remain unexplored. Here, we show that Saccharibacteria exhibit natural competence, and we exploit this property for their genetic manipulation. Imaging of fluorescent protein-labeled Saccharibacteria provides high spatiotemporal resolution of phenomena accompanying epibiotic growth, and a transposon-insertion sequencing (Tn-seq) genome-wide screen reveals the contribution of enigmatic Saccharibacterial genes to growth on their hosts. Finally, we leverage metagenomic data to provide cutting-edge protein structure-based bioinformatic resources that support the strain Southlakia epibionticum and its corresponding host, Actinomyces israelii, as a model system for unlocking the molecular underpinnings of the epibiotic lifestyle.


Asunto(s)
Bacterias , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Metagenoma , Metagenómica , Filogenia , Actinobacteria/fisiología
2.
Cell ; 175(5): 1380-1392.e14, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30343895

RESUMEN

ADP-ribosylation of proteins can profoundly impact their function and serves as an effective mechanism by which bacterial toxins impair eukaryotic cell processes. Here, we report the discovery that bacteria also employ ADP-ribosylating toxins against each other during interspecies competition. We demonstrate that one such toxin from Serratia proteamaculans interrupts the division of competing cells by modifying the essential bacterial tubulin-like protein, FtsZ, adjacent to its protomer interface, blocking its capacity to polymerize. The structure of the toxin in complex with its immunity determinant revealed two distinct modes of inhibition: active site occlusion and enzymatic removal of ADP-ribose modifications. We show that each is sufficient to support toxin immunity; however, the latter additionally provides unprecedented broad protection against non-cognate ADP-ribosylating effectors. Our findings reveal how an interbacterial arms race has produced a unique solution for safeguarding the integrity of bacterial cell division machinery against inactivating post-translational modifications.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas del Citoesqueleto/metabolismo , N-Glicosil Hidrolasas/metabolismo , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/genética , ADP-Ribosilación , Adenosina Difosfato/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Dominio Catalítico , Proteínas del Citoesqueleto/antagonistas & inhibidores , Escherichia coli/crecimiento & desarrollo , Escherichia coli/inmunología , Escherichia coli/metabolismo , Humanos , Mutagénesis Sitio-Dirigida , N-Glicosil Hidrolasas/química , N-Glicosil Hidrolasas/genética , Estructura Terciaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Alineación de Secuencia , Serratia/metabolismo , Imagen de Lapso de Tiempo
3.
Cell ; 163(3): 607-19, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26456113

RESUMEN

Type VI secretion (T6S) influences the composition of microbial communities by catalyzing the delivery of toxins between adjacent bacterial cells. Here, we demonstrate that a T6S integral membrane toxin from Pseudomonas aeruginosa, Tse6, acts on target cells by degrading the universally essential dinucleotides NAD(+) and NADP(+). Structural analyses of Tse6 show that it resembles mono-ADP-ribosyltransferase proteins, such as diphtheria toxin, with the exception of a unique loop that both excludes proteinaceous ADP-ribose acceptors and contributes to hydrolysis. We find that entry of Tse6 into target cells requires its binding to an essential housekeeping protein, translation elongation factor Tu (EF-Tu). These proteins participate in a larger assembly that additionally directs toxin export and provides chaperone activity. Visualization of this complex by electron microscopy defines the architecture of a toxin-loaded T6S apparatus and provides mechanistic insight into intercellular membrane protein delivery between bacteria.


Asunto(s)
Toxinas Bacterianas/metabolismo , NAD+ Nucleosidasa/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreción Tipo VI/química , ADP Ribosa Transferasas/metabolismo , Toxinas Bacterianas/química , Modelos Moleculares , NAD/metabolismo , NAD+ Nucleosidasa/química , NADP/metabolismo , Factor Tu de Elongación Peptídica/química , Estructura Terciaria de Proteína , Pseudomonas aeruginosa/enzimología , Sistemas de Secreción Tipo VI/metabolismo
4.
Nature ; 629(8010): 165-173, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632398

RESUMEN

Streptomyces are a genus of ubiquitous soil bacteria from which the majority of clinically utilized antibiotics derive1. The production of these antibacterial molecules reflects the relentless competition Streptomyces engage in with other bacteria, including other Streptomyces species1,2. Here we show that in addition to small-molecule antibiotics, Streptomyces produce and secrete antibacterial protein complexes that feature a large, degenerate repeat-containing polymorphic toxin protein. A cryo-electron microscopy structure of these particles reveals an extended stalk topped by a ringed crown comprising the toxin repeats scaffolding five lectin-tipped spokes, which led us to name them umbrella particles. Streptomyces coelicolor encodes three umbrella particles with distinct toxin and lectin composition. Notably, supernatant containing these toxins specifically and potently inhibits the growth of select Streptomyces species from among a diverse collection of bacteria screened. For one target, Streptomyces griseus, inhibition relies on a single toxin and that intoxication manifests as rapid cessation of vegetative hyphal growth. Our data show that Streptomyces umbrella particles mediate competition among vegetative mycelia of related species, a function distinct from small-molecule antibiotics, which are produced at the onset of reproductive growth and act broadly3,4. Sequence analyses suggest that this role of umbrella particles extends beyond Streptomyces, as we identified umbrella loci in nearly 1,000 species across Actinobacteria.


Asunto(s)
Antibiosis , Proteínas Bacterianas , Toxinas Bacterianas , Streptomyces , Antibacterianos/biosíntesis , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Antibiosis/efectos de los fármacos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología , Proteínas Bacterianas/ultraestructura , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacología , Microscopía por Crioelectrón , Lectinas/química , Lectinas/genética , Lectinas/metabolismo , Lectinas/ultraestructura , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Streptomyces/química , Streptomyces/efectos de los fármacos , Streptomyces/genética , Streptomyces/crecimiento & desarrollo , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Streptomyces griseus/efectos de los fármacos , Streptomyces griseus/genética , Streptomyces griseus/crecimiento & desarrollo , Streptomyces griseus/metabolismo
5.
Nature ; 583(7817): 631-637, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32641830

RESUMEN

Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques1,2. Because previously described cytidine deaminases operate on single-stranded nucleic acids3, their use in base editing requires the unwinding of double-stranded DNA (dsDNA)-for example by a CRISPR-Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria4. As a consequence, manipulation of mtDNA to date has been limited to the targeted destruction of the mitochondrial genome by designer nucleases9,10.Here we describe an interbacterial toxin, which we name DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions of the split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C•G-to-T•A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders.


Asunto(s)
Toxinas Bacterianas/metabolismo , Citidina Desaminasa/metabolismo , ADN Mitocondrial/genética , Edición Génica/métodos , Genes Mitocondriales/genética , Mitocondrias/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Secuencia de Bases , Burkholderia cenocepacia/enzimología , Burkholderia cenocepacia/genética , Respiración de la Célula/genética , Citidina/metabolismo , Citidina Desaminasa/química , Citidina Desaminasa/genética , Genoma Mitocondrial/genética , Células HEK293 , Humanos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/terapia , Mutación , Fosforilación Oxidativa , Ingeniería de Proteínas , ARN Guía de Kinetoplastida/genética , Especificidad por Sustrato , Sistemas de Secreción Tipo VI/metabolismo
6.
Nat Methods ; 19(11): 1438-1448, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36253643

RESUMEN

Advances in microscopy hold great promise for allowing quantitative and precise measurement of morphological and molecular phenomena at the single-cell level in bacteria; however, the potential of this approach is ultimately limited by the availability of methods to faithfully segment cells independent of their morphological or optical characteristics. Here, we present Omnipose, a deep neural network image-segmentation algorithm. Unique network outputs such as the gradient of the distance field allow Omnipose to accurately segment cells on which current algorithms, including its predecessor, Cellpose, produce errors. We show that Omnipose achieves unprecedented segmentation performance on mixed bacterial cultures, antibiotic-treated cells and cells of elongated or branched morphology. Furthermore, the benefits of Omnipose extend to non-bacterial subjects, varied imaging modalities and three-dimensional objects. Finally, we demonstrate the utility of Omnipose in the characterization of extreme morphological phenotypes that arise during interbacterial antagonism. Our results distinguish Omnipose as a powerful tool for characterizing diverse and arbitrarily shaped cell types from imaging data.


Asunto(s)
Algoritmos , Microscopía , Procesamiento de Imagen Asistido por Computador/métodos
7.
Nature ; 575(7781): 224-228, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31666699

RESUMEN

The human gastrointestinal tract consists of a dense and diverse microbial community, the composition of which is intimately linked to health. Extrinsic factors such as diet and host immunity are insufficient to explain the constituents of this community, and direct interactions between co-resident microorganisms have been implicated as important drivers of microbiome composition. The genomes of bacteria derived from the gut microbiome contain several pathways that mediate contact-dependent interbacterial antagonism1-3. Many members of the Gram-negative order Bacteroidales encode the type VI secretion system (T6SS), which facilitates the delivery of toxic effector proteins into adjacent cells4,5. Here we report the occurrence of acquired interbacterial defence (AID) gene clusters in Bacteroidales species that reside within the human gut microbiome. These clusters encode arrays of immunity genes that protect against T6SS-mediated intra- and inter-species bacterial antagonism. Moreover, the clusters reside on mobile elements, and we show that their transfer is sufficient to confer resistance to toxins in vitro and in gnotobiotic mice. Finally, we identify and validate the protective capability of a recombinase-associated AID subtype (rAID-1) that is present broadly in Bacteroidales genomes. These rAID-1 gene clusters have a structure suggestive of active gene acquisition and include predicted immunity factors of toxins derived from diverse organisms. Our data suggest that neutralization of contact-dependent interbacterial antagonism by AID systems helps to shape human gut microbiome ecology.


Asunto(s)
Bacteroidetes , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Interacciones Microbianas , Sistemas de Secreción Tipo VI/antagonistas & inhibidores , Animales , Bacteroidetes/genética , Bacteroidetes/inmunología , Femenino , Microbioma Gastrointestinal/inmunología , Tracto Gastrointestinal/inmunología , Genes Bacterianos/genética , Humanos , Ratones , Interacciones Microbianas/genética , Interacciones Microbianas/inmunología , Familia de Multigenes/genética , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/inmunología
8.
PLoS Pathog ; 16(6): e1008566, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32492066

RESUMEN

Host-derived glutathione (GSH) is an essential source of cysteine for the intracellular pathogen Francisella tularensis. In a comprehensive transposon insertion sequencing screen, we identified several F. tularensis genes that play central and previously unappreciated roles in the utilization of GSH during the growth of the bacterium in macrophages. We show that one of these, a gene we named dptA, encodes a proton-dependent oligopeptide transporter that enables growth of the organism on the dipeptide Cys-Gly, a key breakdown product of GSH generated by the enzyme γ-glutamyltranspeptidase (GGT). Although GGT was thought to be the principal enzyme involved in GSH breakdown in F. tularensis, our screen identified a second enzyme, referred to as ChaC, that is also involved in the utilization of exogenous GSH. However, unlike GGT and DptA, we show that the importance of ChaC in supporting intramacrophage growth extends beyond cysteine acquisition. Taken together, our findings provide a compendium of F. tularensis genes required for intracellular growth and identify new players in the metabolism of GSH that could be attractive targets for therapeutic intervention.


Asunto(s)
Proteínas Bacterianas , Francisella tularensis/fisiología , Glutatión , Interacciones Huésped-Patógeno/fisiología , Macrófagos , Transglutaminasas , Tularemia , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular , Dipéptidos/genética , Dipéptidos/metabolismo , Femenino , Glutatión/genética , Glutatión/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiología , Macrófagos/patología , Ratones , Transglutaminasas/genética , Transglutaminasas/metabolismo , Tularemia/genética , Tularemia/metabolismo
9.
Nature ; 518(7537): 98-101, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25470067

RESUMEN

Horizontal gene transfer allows organisms to rapidly acquire adaptive traits. Although documented instances of horizontal gene transfer from bacteria to eukaryotes remain rare, bacteria represent a rich source of new functions potentially available for co-option. One benefit that genes of bacterial origin could provide to eukaryotes is the capacity to produce antibacterials, which have evolved in prokaryotes as the result of eons of interbacterial competition. The type VI secretion amidase effector (Tae) proteins are potent bacteriocidal enzymes that degrade the cell wall when delivered into competing bacterial cells by the type VI secretion system. Here we show that tae genes have been transferred to eukaryotes on at least six occasions, and that the resulting domesticated amidase effector (dae) genes have been preserved for hundreds of millions of years through purifying selection. We show that the dae genes acquired eukaryotic secretion signals, are expressed within recipient organisms, and encode active antibacterial toxins that possess substrate specificity matching extant Tae proteins of the same lineage. Finally, we show that a dae gene in the deer tick Ixodes scapularis limits proliferation of Borrelia burgdorferi, the aetiologic agent of Lyme disease. Our work demonstrates that a family of horizontally acquired toxins honed to mediate interbacterial antagonism confers previously undescribed antibacterial capacity to eukaryotes. We speculate that the selective pressure imposed by competition between bacteria has produced a reservoir of genes encoding diverse antimicrobial functions that are tailored for co-option by eukaryotic innate immune systems.


Asunto(s)
Bacterias/enzimología , Bacterias/genética , Toxinas Bacterianas/genética , Eucariontes/genética , Eucariontes/inmunología , Transferencia de Gen Horizontal/genética , Genes Bacterianos/genética , Inmunidad Innata , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Animales , Bacterias/citología , Bacterias/inmunología , Sistemas de Secreción Bacterianos , Toxinas Bacterianas/metabolismo , Borrelia burgdorferi/citología , Borrelia burgdorferi/crecimiento & desarrollo , Borrelia burgdorferi/inmunología , Pared Celular/metabolismo , Secuencia Conservada/genética , Eucariontes/metabolismo , Inmunidad Innata/genética , Ixodes/genética , Ixodes/inmunología , Ixodes/metabolismo , Ixodes/microbiología , Filogenia , Especificidad por Sustrato
10.
Mol Cell ; 51(5): 584-93, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-23954347

RESUMEN

Secretion systems require high-fidelity mechanisms to discriminate substrates among the vast cytoplasmic pool of proteins. Factors mediating substrate recognition by the type VI secretion system (T6SS) of Gram-negative bacteria, a widespread pathway that translocates effector proteins into target bacterial cells, have not been defined. We report that haemolysin coregulated protein (Hcp), a ring-shaped hexamer secreted by all characterized T6SSs, binds specifically to cognate effector molecules. Electron microscopy analysis of an Hcp-effector complex from Pseudomonas aeruginosa revealed the effector bound to the inner surface of Hcp. Further studies demonstrated that interaction with the Hcp pore is a general requirement for secretion of diverse effectors encompassing several enzymatic classes. Though previous models depict Hcp as a static conduit, our data indicate it is a chaperone and receptor of substrates. These unique functions of a secreted protein highlight fundamental differences between the export mechanism of T6 and other characterized secretory pathways.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/fisiología , Proteínas Hemolisinas/metabolismo , Pseudomonas aeruginosa/metabolismo , Amidohidrolasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Muramidasa/metabolismo , Mutación , Conformación Proteica , Pseudomonas aeruginosa/genética , Especificidad por Sustrato
11.
Nature ; 496(7446): 508-12, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23552891

RESUMEN

Membranes allow the compartmentalization of biochemical processes and are therefore fundamental to life. The conservation of the cellular membrane, combined with its accessibility to secreted proteins, has made it a common target of factors mediating antagonistic interactions between diverse organisms. Here we report the discovery of a diverse superfamily of bacterial phospholipase enzymes. Within this superfamily, we defined enzymes with phospholipase A1 and A2 activity, which are common in host-cell-targeting bacterial toxins and the venoms of certain insects and reptiles. However, we find that the fundamental role of the superfamily is to mediate antagonistic bacterial interactions as effectors of the type VI secretion system (T6SS) translocation apparatus; accordingly, we name these proteins type VI lipase effectors. Our analyses indicate that PldA of Pseudomonas aeruginosa, a eukaryotic-like phospholipase D, is a member of the type VI lipase effector superfamily and the founding substrate of the haemolysin co-regulated protein secretion island II T6SS (H2-T6SS). Although previous studies have specifically implicated PldA and the H2-T6SS in pathogenesis, we uncovered a specific role for the effector and its secretory machinery in intra- and interspecies bacterial interactions. Furthermore, we find that this effector achieves its antibacterial activity by degrading phosphatidylethanolamine, the major component of bacterial membranes. The surprising finding that virulence-associated phospholipases can serve as specific antibacterial effectors suggests that interbacterial interactions are a relevant factor driving the continuing evolution of pathogenesis.


Asunto(s)
Antibacterianos/metabolismo , Antibiosis , Sistemas de Secreción Bacterianos , Fosfolipasa D/metabolismo , Pseudomonas aeruginosa/enzimología , Membrana Celular/química , Membrana Celular/metabolismo , Evolución Molecular , Fosfatidiletanolaminas/metabolismo , Fosfolipasa D/química , Fosfolipasa D/clasificación , Filogenia , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidad , Especificidad de la Especie , Especificidad por Sustrato , Factores de Virulencia/química , Factores de Virulencia/metabolismo
12.
Proc Natl Acad Sci U S A ; 113(13): 3639-44, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26957597

RESUMEN

The human gut microbiome is a dynamic and densely populated microbial community that can provide important benefits to its host. Cooperation and competition for nutrients among its constituents only partially explain community composition and interpersonal variation. Notably, certain human-associated Bacteroidetes--one of two major phyla in the gut--also encode machinery for contact-dependent interbacterial antagonism, but its impact within gut microbial communities remains unknown. Here we report that prominent human gut symbionts persist in the gut through continuous attack on their immediate neighbors. Our analysis of just one of the hundreds of species in these communities reveals 12 candidate antibacterial effector loci that can exist in 32 combinations. Through the use of secretome studies, in vitro bacterial interaction assays and multiple mouse models, we uncover strain-specific effector/immunity repertoires that can predict interbacterial interactions in vitro and in vivo, and find that some of these strains avoid contact-dependent killing by accumulating immunity genes to effectors that they do not encode. Effector transmission rates in live animals can exceed 1 billion events per minute per gram of colonic contents, and multiphylum communities of human gut commensals can partially protect sensitive strains from these attacks. Together, these results suggest that gut microbes can determine their interactions through direct contact. An understanding of the strategies human gut symbionts have evolved to target other members of this community may provide new approaches for microbiome manipulation.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Animales , Bacteroides fragilis/genética , Bacteroides fragilis/inmunología , Bacteroides fragilis/fisiología , Femenino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/inmunología , Genoma Bacteriano , Vida Libre de Gérmenes , Humanos , Masculino , Ratones , Modelos Animales , Filogenia , Simbiosis/genética , Simbiosis/inmunología , Simbiosis/fisiología , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/inmunología , Sistemas de Secreción Tipo VI/fisiología
13.
Proc Natl Acad Sci U S A ; 112(27): 8433-8, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26100878

RESUMEN

In mammalian cells, programmed cell death (PCD) plays important roles in development, in the removal of damaged cells, and in fighting bacterial infections. Although widespread among multicellular organisms, there are relatively few documented instances of PCD in bacteria. Here we describe a potential PCD pathway in Pseudomonas aeruginosa that enhances the ability of the bacterium to cause disease in a lung infection model. Activation of the system can occur in a subset of cells in response to DNA damage through cleavage of an essential transcription regulator we call AlpR. Cleavage of AlpR triggers a cell lysis program through de-repression of the alpA gene, which encodes a positive regulator that activates expression of the alpBCDE lysis cassette. Although this is lethal to the individual cell in which it occurs, we find it benefits the population as a whole during infection of a mammalian host. Thus, host and pathogen each may use PCD as a survival-promoting strategy. We suggest that activation of the Alp cell lysis pathway is a disease-enhancing response to bacterial DNA damage inflicted by the host immune system.


Asunto(s)
Proteínas Bacterianas/genética , Bacteriólisis/genética , Pseudomonas aeruginosa/genética , Transducción de Señal/genética , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/metabolismo , Western Blotting , Regulación Bacteriana de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Viabilidad Microbiana/genética , Microscopía Fluorescente , Datos de Secuencia Molecular , Mutación , Operón/genética , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/metabolismo , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Imagen de Lapso de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Virulencia/genética
14.
Annu Rev Microbiol ; 66: 453-72, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22746332

RESUMEN

The type VI secretion system (T6SS) is a complex and widespread gram-negative bacterial export pathway with the capacity to translocate protein effectors into a diversity of target cell types. Current structural models of the T6SS indicate that the apparatus is composed of at least two complexes, a dynamic bacteriophage-like structure and a cell-envelope-spanning membrane-associated assembly. How these complexes interact to promote effector secretion and cell targeting remains a major question in the field. As a contact-dependent pathway with specific cellular targets, the T6SS is subject to tight regulation. Thus, the identification of regulatory elements that control T6S expression continues to shape our understanding of the environmental circumstances relevant to its function. This review discusses recent progress toward characterizing T6S structure and regulation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/genética , Bacterias Gramnegativas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Bacterianas/genética , Bacterias Gramnegativas/genética , Proteínas de Transporte de Membrana/genética , Complejos Multiproteicos/genética , Unión Proteica , Multimerización de Proteína
15.
Nature ; 475(7356): 343-7, 2011 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-21776080

RESUMEN

Peptidoglycan is the major structural constituent of the bacterial cell wall, forming a meshwork outside the cytoplasmic membrane that maintains cell shape and prevents lysis. In Gram-negative bacteria, peptidoglycan is located in the periplasm, where it is protected from exogenous lytic enzymes by the outer membrane. Here we show that the type VI secretion system of Pseudomonas aeruginosa breaches this barrier to deliver two effector proteins, Tse1 and Tse3, to the periplasm of recipient cells. In this compartment, the effectors hydrolyse peptidoglycan, thereby providing a fitness advantage for P. aeruginosa cells in competition with other bacteria. To protect itself from lysis by Tse1 and Tse3, P. aeruginosa uses specific periplasmically localized immunity proteins. The requirement for these immunity proteins depends on intercellular self-intoxication through an active type VI secretion system, indicating a mechanism for export whereby effectors do not access donor cell periplasm in transit.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos , Bacteriólisis , Bacterias Gramnegativas/citología , Bacterias Gramnegativas/metabolismo , Interacciones Microbianas , Pseudomonas aeruginosa/metabolismo , Amidohidrolasas/química , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Toxinas Bacterianas/antagonistas & inhibidores , Toxinas Bacterianas/metabolismo , Hidrólisis , Muramidasa/química , Muramidasa/genética , Muramidasa/metabolismo , Peptidoglicano/metabolismo , Periplasma/metabolismo , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas putida/crecimiento & desarrollo , Pseudomonas putida/metabolismo , Especificidad por Sustrato
16.
Mol Microbiol ; 92(3): 529-42, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24589350

RESUMEN

Bacterial secretion systems often employ molecular chaperones to recognize and facilitate export of their substrates. Recent work demonstrated that a secreted component of the type VI secretion system (T6SS), haemolysin co-regulated protein (Hcp), binds directly to effectors, enhancing their stability in the bacterial cytoplasm. Herein, we describe a quantitative cellular proteomics screen for T6S substrates that exploits this chaperone-like quality of Hcp. Application of this approach to the Hcp secretion island I-encoded T6SS (H1-T6SS) of Pseudomonas aeruginosa led to the identification of a novel effector protein, termed Tse4 (type VI secretion exported 4), subsequently shown to act as a potent intra-specific H1-T6SS-delivered antibacterial toxin. Interestingly, our screen failed to identify two predicted H1-T6SS effectors, Tse5 and Tse6, which differ from Hcp-stabilized substrates by the presence of toxin-associated PAAR-repeat motifs and genetic linkage to members of the valine-glycine repeat protein G (vgrG) genes. Genetic studies further distinguished these two groups of effectors: Hcp-stabilized effectors were found to display redundancy in interbacterial competition with respect to the requirement for the two H1-T6SS-exported VgrG proteins, whereas Tse5 and Tse6 delivery strictly required a cognate VgrG. Together, we propose that interaction with either VgrG or Hcp defines distinct pathways for T6S effector export.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos , Chaperonas Moleculares/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Transporte de Proteínas
17.
Proc Natl Acad Sci U S A ; 109(48): 19804-9, 2012 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-23150540

RESUMEN

Interbacterial interaction pathways play an important role in defining the structure and complexity of bacterial associations. A quantitative description of such pathways offers promise for understanding the forces that contribute to community composition. We developed time-lapse fluorescence microscopy methods for quantitation of interbacterial interactions and applied these to the characterization of type VI secretion (T6S) in Pseudomonas aeruginosa. Our analyses allowed a direct determination of the efficiency of recipient cell lysis catalyzed by this intercellular toxin delivery pathway and provided evidence that its arsenal extends beyond known effector proteins. Measurement of T6S apparatus localization revealed correlated activation among neighboring cells, which, taken together with genetic data, implicate the elaboration of a functional T6S apparatus with a marked increase in susceptibility to intoxication. This possibility was supported by the identification of T6S-inactivating mutations in a genome-wide screen for resistance to T6S-mediated intoxication and by time-lapse fluorescence microscopy analyses showing a decreased lysis rate of recipient cells lacking T6S function. Our discoveries highlight the utility of single-cell approaches for measuring interbacterial phenomena and provide a foundation for studying the contribution of a widespread bacterial interaction pathway to community structure.


Asunto(s)
Pseudomonas aeruginosa/fisiología , Microscopía Fluorescente
18.
J Biol Chem ; 288(37): 26616-24, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-23878199

RESUMEN

Bacteria employ type VI secretion systems (T6SSs) to facilitate interactions with prokaryotic and eukaryotic cells. Despite the widespread identification of T6SSs among Gram-negative bacteria, the number of experimentally validated substrate effector proteins mediating these interactions remains small. Here, employing an informatics approach, we define novel families of T6S peptidoglycan glycoside hydrolase effectors. Consistent with the known intercellular self-intoxication exhibited by the T6S pathway, we observe that each effector gene is located adjacent to a hypothetical open reading frame encoding a putative periplasmically localized immunity determinant. To validate our sequence-based approach, we functionally investigate a representative family member from the soil-dwelling bacterium Pseudomonas protegens. We demonstrate that this protein is secreted in a T6SS-dependent manner and that it confers a fitness advantage in growth competition assays with Pseudomonas putida. In addition, we determined the 1.4 Å x-ray crystal structure of this effector in complex with its cognate immunity protein. The structure reveals the effector shares highest overall structural similarity to a glycoside hydrolase family associated with peptidoglycan N-acetylglucosaminidase activity, suggesting that T6S peptidoglycan glycoside hydrolase effector families may comprise significant enzymatic diversity. Our structural analyses also demonstrate that self-intoxication is prevented by the immunity protein through direct occlusion of the effector active site. This work significantly expands our current understanding of T6S effector diversity.


Asunto(s)
Sistemas de Secreción Bacterianos/fisiología , N-Acetil Muramoil-L-Alanina Amidasa/química , Calorimetría , Dominio Catalítico , Biología Computacional , Cristalografía por Rayos X , Escherichia coli/metabolismo , Microscopía de Contraste de Fase , Muramidasa/química , Peptidoglicano/química , Conformación Proteica , Pliegue de Proteína , Pseudomonas/metabolismo , Pseudomonas putida/metabolismo
19.
Infect Immun ; 82(4): 1445-52, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24452686

RESUMEN

The type VI secretion system (T6SS) has emerged as a critical virulence factor for the group of closely related Burkholderia spp. that includes Burkholderia pseudomallei, B. mallei, and B. thailandensis. While the genomes of these bacteria, referred to as the Bptm group, appear to encode several T6SSs, we and others have shown that one of these, type VI secretion system 5 (T6SS-5), is required for virulence in mammalian infection models. Despite its pivotal role in the pathogenesis of the Bptm group, the effector repertoire of T6SS-5 has remained elusive. Here we used quantitative mass spectrometry to compare the secretome of wild-type B. thailandensis to that of a mutant harboring a nonfunctional T6SS-5. This analysis identified VgrG-5 as a novel secreted protein whose export depends on T6SS-5 function. Bioinformatics analysis revealed that VgrG-5 is a specialized VgrG protein that harbors a C-terminal domain (CTD) conserved among Bptm group species. We found that a vgrG-5 ΔCTD mutant is avirulent in mice and is unable to stimulate the fusion of host cells, a hallmark of the Bptm group previously shown to require T6SS-5 function. The singularity of VgrG-5 as a detected T6SS-5 substrate, taken together with the essentiality of its CTD for virulence, suggests that the protein is critical for the effector activity of T6SS-5. Intriguingly, we show that unlike the bacterial-cell-targeting T6SSs characterized so far, T6SS-5 localizes to the bacterial cell pole. We propose a model whereby the CTD of VgrG-5-, propelled by T6SS-5-, plays a key role in inducing membrane fusion, either by the recruitment of other factors or by direct participation.


Asunto(s)
Sistemas de Secreción Bacterianos/fisiología , Burkholderia/patogenicidad , Células Gigantes/fisiología , Animales , Western Blotting , Burkholderia/metabolismo , Células Cultivadas , Células Gigantes/metabolismo , Interacciones Huésped-Parásitos/fisiología , Macrófagos/metabolismo , Espectrometría de Masas , Fusión de Membrana/fisiología , Ratones , Microscopía Fluorescente , Virulencia/genética , Virulencia/fisiología , Factores de Virulencia/metabolismo
20.
PLoS Pathog ; 8(4): e1002613, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22511866

RESUMEN

The type VI secretion system (T6SS) has emerged as an important mediator of interbacterial interactions. A T6SS from Pseudomonas aeruginosa targets at least three effector proteins, type VI secretion exported 1-3 (Tse1-3), to recipient Gram-negative cells. The Tse2 protein is a cytoplasmic effector that acts as a potent inhibitor of target cell proliferation, thus providing a pronounced fitness advantage for P. aeruginosa donor cells. P. aeruginosa utilizes a dedicated immunity protein, type VI secretion immunity 2 (Tsi2), to protect against endogenous and intercellularly-transferred Tse2. Here we show that Tse2 delivered by the T6SS efficiently induces quiescence, not death, within recipient cells. We demonstrate that despite direct interaction of Tsi2 and Tse2 in the cytoplasm, Tsi2 is dispensable for targeting the toxin to the secretory apparatus. To gain insights into the molecular basis of Tse2 immunity, we solved the 1.00 Å X-ray crystal structure of Tsi2. The structure shows that Tsi2 assembles as a dimer that does not resemble previously characterized immunity or antitoxin proteins. A genetic screen for Tsi2 mutants deficient in Tse2 interaction revealed an acidic patch distal to the Tsi2 homodimer interface that mediates toxin interaction and immunity. Consistent with this finding, we observed that destabilization of the Tsi2 dimer does not impact Tse2 interaction. The molecular insights into Tsi2 structure and function garnered from this study shed light on the mechanisms of T6 effector secretion, and indicate that the Tse2-Tsi2 effector-immunity pair has features distinguishing it from previously characterized toxin-immunity and toxin-antitoxin systems.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/fisiología , Multimerización de Proteína , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Pseudomonas aeruginosa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA