Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 583(7818): 768-770, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32728241

RESUMEN

Globular clusters are some of the oldest bound stellar structures observed in the Universe1. They are ubiquitous in large galaxies and are believed to trace intense star-formation events and the hierarchical build-up of structure2,3. Observations of globular clusters in the Milky Way, and a wide variety of other galaxies, have found evidence for a 'metallicity floor', whereby no globular clusters are found with chemical (metal) abundances below approximately 0.3 to 0.4 per cent of that of the Sun4-6. The existence of this metallicity floor may reflect a minimum mass and a maximum redshift for surviving globular clusters to form-both critical components for understanding the build-up of mass in the Universe7. Here we report measurements from the Southern Stellar Streams Spectroscopic Survey of the spatially thin, dynamically cold Phoenix stellar stream in the halo of the Milky Way. The properties of the Phoenix stream are consistent with it being the tidally disrupted remains of a globular cluster. However, its metal abundance ([Fe/H] = -2.7) is substantially below the empirical metallicity floor. The Phoenix stream thus represents the debris of the most metal-poor globular clusters discovered so far, and its progenitor is distinct from the present-day globular cluster population in the local Universe. Its existence implies that globular clusters below the metallicity floor have probably existed, but were destroyed during Galactic evolution.

2.
Nature ; 550(7674): 80-83, 2017 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-28980637

RESUMEN

Type Ia supernovae arise from the thermonuclear explosion of white-dwarf stars that have cores of carbon and oxygen. The uniformity of their light curves makes these supernovae powerful cosmological distance indicators, but there have long been debates about exactly how their explosion is triggered and what kind of companion stars are involved. For example, the recent detection of the early ultraviolet pulse of a peculiar, subluminous type Ia supernova has been claimed as evidence for an interaction between a red-giant or a main-sequence companion and ejecta from a white-dwarf explosion. Here we report observations of a prominent but red optical flash that appears about half a day after the explosion of a type Ia supernova. This supernova shows hybrid features of different supernova subclasses, namely a light curve that is typical of normal-brightness supernovae, but with strong titanium absorption, which is commonly seen in the spectra of subluminous ones. We argue that this early flash does not occur through previously suggested mechanisms such as the companion-ejecta interaction. Instead, our simulations show that it could occur through detonation of a thin helium shell either on a near-Chandrasekhar-mass white dwarf, or on a sub-Chandrasekhar-mass white dwarf merging with a less-massive white dwarf. Our finding provides evidence that one branch of previously proposed explosion models-the helium-ignition branch-does exist in nature, and that such a model may account for the explosions of white dwarfs in a mass range wider than previously supposed.

3.
Sci Bull (Beijing) ; 62(21): 1432, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36659391
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA