Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ther ; 32(1): 185-203, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38096818

RESUMEN

Extracellular vesicles (EVs) released from healthy endothelial cells (ECs) have shown potential for promoting angiogenesis, but their therapeutic efficacy remains poorly understood. We have previously shown that transplantation of a human embryonic stem cell-derived endothelial cell product (hESC-ECP), promotes new vessel formation in acute ischemic disease in mice, likely via paracrine mechanism(s). Here, we demonstrated that EVs from hESC-ECPs (hESC-eEVs) significantly increased EC tube formation and wound closure in vitro at ultralow doses, whereas higher doses were ineffective. More important, EVs isolated from the mesodermal stage of the differentiation (hESC-mEVs) had no effect. Small RNA sequencing revealed that hESC-eEVs have a unique transcriptomic profile and are enriched in known proangiogenic microRNAs (miRNAs, miRs). Moreover, an in silico analysis identified three novel hESC-eEV-miRNAs with potential proangiogenic function. Differential expression analysis suggested that two of those, miR-4496 and miR-4691-5p, are highly enriched in hESC-eEVs. Overexpression of miR-4496 or miR-4691-5p resulted in increased EC tube formation and wound closure in vitro, validating the novel proangiogenic function of these miRNAs. In summary, we demonstrated that hESC-eEVs are potent inducers of EC angiogenic response at ultralow doses and contain a unique EV-associated miRNA repertoire, including miR-4496 and miR-4691-5p, with novel proangiogenic function.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Humanos , Animales , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Células Endoteliales/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Diferenciación Celular/genética , Células Madre/metabolismo
2.
Cytotherapy ; 23(8): 730-739, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33593688

RESUMEN

BACKGROUND AIMS: Cell-based therapies (CBTs) provide opportunities to treat rare and high-burden diseases. Manufacturing development of these innovative products is said to be complex and costly. However, little research is available providing insight into resource use and cost drivers. Therefore, this study aimed to assess the feasibility of estimating the cost of manufacturing development of two cell-based therapy case studies using a CBT cost framework specifically designed for small-scale cell-based therapies. METHODS: A retrospective costing study was conducted in which the cost of developing an adoptive immunotherapy of Epstein-Barr virus-specific cytotoxic T lymphocytes (CTLs) and a pluripotent stem cell (PSC) master cell bank was estimated. Manufacturing development was defined as products advancing from technology readiness level 3 to 6. The study was conducted in a Scottish facility. Development steps were recreated via developer focus groups. Data were collected from facility administrative and financial records and developer interviews. RESULTS: Application of the manufacturing cost framework to retrospectively estimate the manufacturing design cost of two case studies in one Scottish facility appeared feasible. Manufacturing development cost was estimated at £1,201,016 for CTLs and £494,456 for PSCs. Most costs were accrued in the facility domain (56% and 51%), followed by personnel (20% and 32%), materials (19% and 15%) and equipment (4% and 2%). CONCLUSIONS: Based on this study, it seems feasible to retrospectively estimate resources consumed in manufacturing development of cell-based therapies. This fosters inclusion of cost in the formulation and dissemination of best practices to facilitate early and sustainable patient access and inform future cost-conscious manufacturing design decisions.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Tratamiento Basado en Trasplante de Células y Tejidos , Estudios de Factibilidad , Herpesvirus Humano 4 , Humanos , Estudios Retrospectivos
3.
Eur Heart J ; 41(9): 1024-1036, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31242503

RESUMEN

AIMS: Pluripotent stem cell-derived endothelial cell products possess therapeutic potential in ischaemic vascular disease. However, the factors that drive endothelial differentiation from pluripotency and cellular specification are largely unknown. The aims of this study were to use single-cell RNA sequencing (scRNA-seq) to map the transcriptional landscape and cellular dynamics of directed differentiation of human embryonic stem cell-derived endothelial cells (hESC-EC) and to compare these cells to mature endothelial cells from diverse vascular beds. METHODS AND RESULTS: A highly efficient directed 8-day differentiation protocol was used to generate a hESC-derived endothelial cell product (hESC-ECP), in which 66% of cells co-expressed CD31 and CD144. We observed largely homogeneous hESC and mesodermal populations at Days 0 and 4, respectively, followed by a rapid emergence of distinct endothelial and mesenchymal populations. Pseudotime trajectory identified transcriptional signatures of endothelial commitment and maturation during the differentiation process. Concordance in transcriptional signatures was verified by scRNA-seq analysis using both a second hESC line RC11, and an alternative hESC-EC differentiation protocol. In total, 105 727 cells were subjected to scRNA-seq analysis. Global transcriptional comparison revealed a transcriptional architecture of hESC-EC that differs from freshly isolated and cultured human endothelial cells and from organ-specific endothelial cells. CONCLUSION: A transcriptional bifurcation into endothelial and mesenchymal lineages was identified, as well as novel transcriptional signatures underpinning commitment and maturation. The transcriptional architecture of hESC-ECP was distinct from mature and foetal human EC.


Asunto(s)
Células Endoteliales , Células Madre Pluripotentes , Diferenciación Celular , Células Madre Embrionarias , Humanos , Análisis de Secuencia de ARN
4.
J Transl Med ; 18(1): 359, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32958009

RESUMEN

More than seven months into the coronavirus disease -19 (COVID-19) pandemic, infection from the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to over 21.2 million cases and resulted in over 760,000 deaths worldwide so far. As a result, COVID-19 has changed all our lives as we battle to curtail the spread of the infection in the absence of specific therapies against coronaviruses and in anticipation of a proven safe and efficacious vaccine. Common with previous outbreaks of coronavirus infections, SARS and Middle East respiratory syndrome, COVID-19 can lead to acute respiratory distress syndrome (ARDS) that arises due to an imbalanced immune response. While several repurposed antiviral and host-response drugs are under examination as potential treatments, other novel therapeutics are also being explored to alleviate the effects on critically ill patients. The use of mesenchymal stromal cells (MSCs) for COVID-19 has become an attractive avenue down which almost 70 different clinical trial teams have ventured. Successfully trialled for the treatment of other conditions such as multiple sclerosis, osteoarthritis and graft versus host disease, MSCs possess both regenerative and immunomodulatory properties, the latter of which can be harnessed to reduce the severity and longevity of ARDS in patients under intensive care due to SARS-CoV-2 infection.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/terapia , Trasplante de Células Madre Mesenquimatosas , Neumonía Viral/terapia , Animales , COVID-19 , Ensayos Clínicos como Asunto , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/inmunología , Humanos , Pandemias , Neumonía Viral/epidemiología , Neumonía Viral/inmunología , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/terapia , SARS-CoV-2 , Investigación Biomédica Traslacional , Tratamiento Farmacológico de COVID-19
5.
Stem Cells ; 37(9): 1130-1135, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31021472

RESUMEN

This report summarizes the recent activity of the International Stem Cell Banking Initiative held at Harvard Stem Cell Institute, Boston, MA, USA, on June 18, 2017. In this meeting, we aimed to find consensus on ongoing issues of quality control (QC), safety, and efficacy of human pluripotent stem cell banks and their derivative cell therapy products for the global harmonization. In particular, assays for the QC testing such as pluripotency assays test and general QC testing criteria were intensively discussed. Moreover, the recent activities of global stem cell banking centers and the regulatory bodies were briefly summarized to provide an overview on global developments and issues. Stem Cells 2019;37:1130-1135.


Asunto(s)
Células Madre Pluripotentes/citología , Células Madre/citología , Bancos de Tejidos/normas , Boston , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Humanos , Células Madre Pluripotentes Inducidas/citología , Cooperación Internacional , Control de Calidad
6.
Cytotherapy ; 22(12): 762-771, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32828673

RESUMEN

BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) isolated from various tissues are under investigation as cellular therapeutics in a wide range of diseases. It is appreciated that the basic biological functions of MSCs vary depending on tissue source. However, in-depth comparative analyses between MSCs isolated from different tissue sources under Good Manufacturing Practice (GMP) conditions are lacking. Human clinical-grade low-purity islet (LPI) fractions are generated as a byproduct of islet isolation for transplantation. MSC isolates were derived from LPI fractions with the aim of performing a systematic, standardized comparative analysis of these cells with clinically relevant bone marrow-derived MSCs (BM MSCs). METHODS: MSC isolates were derived from LPI fractions and expanded in platelet lysate-supplemented medium or in commercially available xenogeneic-free medium. Doubling rate, phenotype, differentiation potential, gene expression, protein production and immunomodulatory capacity of LPIs were compared with those of BM MSCs. RESULTS: MSCs can be readily derived in vitro from non-transplanted fractions resulting from islet cell processing (i.e., LPI MSCs). LPI MSCs grow stably in serum-free or platelet lysate-supplemented media and demonstrate in vitro self-renewal, as measured by colony-forming unit assay. LPI MSCs express patterns of chemokines and pro-regenerative factors similar to those of BM MSCs and, importantly, are equally able to attract immune cells in vitro and in vivo and suppress T-cell proliferation in vitro. Additionally, LPI MSCs can be expanded to therapeutically relevant doses at low passage under GMP conditions. CONCLUSIONS: LPI MSCs represent an alternative source of GMP MSCs with functions comparable to BM MSCs.


Asunto(s)
Células de la Médula Ósea/citología , Técnicas de Cultivo de Célula/métodos , Inmunidad , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/inmunología , Neovascularización Fisiológica , Páncreas/citología , Biomarcadores/metabolismo , Diferenciación Celular , Proliferación Celular , Forma de la Célula , Células Cultivadas , Ensayo de Unidades Formadoras de Colonias , Humanos , Inmunomodulación , Interferón gamma/metabolismo , Medicina Regenerativa , Linfocitos T/citología
7.
Cytotherapy ; 22(7): 388-397, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32414635

RESUMEN

BACKGROUND AIMS: Recent technical and clinical advances with cell-based therapies (CBTs) hold great promise in the treatment of patients with rare diseases and those with high unmet medical need. Currently the majority of CBTs are developed and manufactured in specialized academic facilities. Due to small scale, unique characteristics and specific supply chain, CBT manufacturing is considered costly compared to more conventional medicinal products. As a result, biomedical researchers and clinicians are increasingly faced with cost considerations in CBT development. The objective of this research was to develop a costing framework and methodology for academic and other small-scale facilities that manufacture cell-based therapies. METHODS: We conducted an international multi-center costing study in four facilities in Europe using eight CBTs as case studies. This study includes costs from cell or tissue procurement to release of final product for clinical use. First, via interviews with research scientists, clinicians, biomedical scientists, pharmacists and technicians, we designed a high-level costing framework. Next, we developed a more detailed uniform methodology to allocate cost items. Costs were divided into steps (tissue procurement, manufacturing and fill-finish). The steps were each subdivided into cost categories (materials, equipment, personnel and facility), and each category was broken down into facility running (fixed) costs and operational (variable) costs. The methodology was tested via the case studies and validated in developer interviews. Costs are expressed in 2018 euros (€). RESULTS: The framework and methodology were applicable across facilities and proved sensitive to differences in product and facility characteristics. Case study cost estimates ranged between €23 033 and €190 799 Euros per batch, with batch yield varying between 1 and 88 doses. The cost estimations revealed hidden costs to developers and provided insights into cost drivers to help design manufacturing best practices. CONCLUSIONS: This framework and methodology provide step-by-step guidance to estimate manufacturing costs specifically for cell-based therapies manufactured in academic and other small-scale enterprises. The framework and methodology can be used to inform and plan cost-conscious strategies for CBTs.


Asunto(s)
Academias e Institutos , Tratamiento Basado en Trasplante de Células y Tejidos/economía , Costos y Análisis de Costo , Comercio , Europa (Continente) , Instituciones de Salud , Humanos
8.
Mol Ther ; 26(7): 1669-1684, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29703701

RESUMEN

Pluripotent stem cell-derived differentiated endothelial cells offer high potential in regenerative medicine in the cardiovascular system. With the aim of translating the use of a human stem cell-derived endothelial cell product (hESC-ECP) for treatment of critical limb ischemia (CLI) in man, we report a good manufacturing practice (GMP)-compatible protocol and detailed cell tracking and efficacy data in multiple preclinical models. The clinical-grade cell line RC11 was used to generate hESC-ECP, which was identified as mostly endothelial (60% CD31+/CD144+), with the remainder of the subset expressing various pericyte/mesenchymal stem cell markers. Cell tracking using MRI, PET, and qPCR in a murine model of limb ischemia demonstrated that hESC-ECP was detectable up to day 7 following injection. Efficacy in several murine models of limb ischemia (immunocompromised/immunocompetent mice and mice with either type I/II diabetes mellitus) demonstrated significantly increased blood perfusion and capillary density. Overall, we demonstrate a GMP-compatible hESC-ECP that improved ischemic limb perfusion and increased local angiogenesis without engraftment, paving the way for translation of this therapy.


Asunto(s)
Células Endoteliales/citología , Miembro Posterior/citología , Isquemia/terapia , Neovascularización Fisiológica/fisiología , Animales , Biomarcadores/metabolismo , Diferenciación Celular/fisiología , Línea Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Endoteliales/metabolismo , Miembro Posterior/metabolismo , Humanos , Isquemia/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Pericitos/citología , Pericitos/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Trasplante de Células Madre/métodos
9.
Blood ; 127(9): e1-e11, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26660425

RESUMEN

In platelets, splicing and translation occur in the absence of a nucleus. However, the integrity and stability of mRNAs derived from megakaryocyte progenitor cells remain poorly quantified on a transcriptome-wide level. As circular RNAs (circRNAs) are resistant to degradation by exonucleases, their abundance relative to linear RNAs can be used as a surrogate marker for mRNA stability in the absence of transcription. Here we show that circRNAs are enriched in human platelets 17- to 188-fold relative to nucleated tissues and 14- to 26-fold relative to samples digested with RNAse R to selectively remove linear RNA. We compare RNAseq read depths inside and outside circRNAs to provide in silico evidence of transcript circularity, show that exons within circRNAs are enriched on average 12.7 times in platelets relative to nucleated tissues and identify 3162 genes significantly enriched for circRNAs, including some where all RNAseq reads appear to be derived from circular molecules. We also confirm that this is a feature of other anucleate cells through transcriptome sequencing of mature erythrocytes, demonstrate that circRNAs are not enriched in cultured megakaryocytes, and demonstrate that linear RNAs decay more rapidly than circRNAs in platelet preparations. Collectively, these results suggest that circulating platelets have lost >90% of their progenitor mRNAs and that translation in platelets occurs against the backdrop of a highly degraded transcriptome. Finally, we find that transcripts previously classified as products of reverse transcriptase template switching are both enriched in platelets and resistant to decay, countering the recent suggestion that up to 50% of rearranged RNAs are artifacts.


Asunto(s)
Plaquetas/metabolismo , Estabilidad del ARN/genética , ARN/genética , Transcriptoma/genética , Exones/genética , Exorribonucleasas/metabolismo , Humanos , Megacariocitos/metabolismo , ARN Circular , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados
10.
Stem Cells ; 35(4): 886-897, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28026072

RESUMEN

Blood transfusion is widely used in the clinic but the source of red blood cells (RBCs) is dependent on donors, procedures are susceptible to transfusion-transmitted infections and complications can arise from immunological incompatibility. Clinically-compatible and scalable protocols that allow the production of RBCs from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been described but progress to translation has been hampered by poor maturation and fragility of the resultant cells. Genetic programming using transcription factors has been used to drive lineage determination and differentiation so we used this approach to assess whether exogenous expression of the Erythroid Krüppel-like factor 1 (EKLF/KLF1) could augment the differentiation and stability of iPSC-derived RBCs. To activate KLF1 at defined time points during later stages of the differentiation process and to avoid transgene silencing that is commonly observed in differentiating pluripotent stem cells, we targeted a tamoxifen-inducible KLF1-ERT2 expression cassette into the AAVS1 locus. Activation of KLF1 at day 10 of the differentiation process when hematopoietic progenitor cells were present, enhanced erythroid commitment and differentiation. Continued culture resulted the appearance of more enucleated cells when KLF1 was activated which is possibly due to their more robust morphology. Globin profiling indicated that these conditions produced embryonic-like erythroid cells. This study demonstrates the successful use of an inducible genetic programing strategy that could be applied to the production of many other cell lineages from human induced pluripotent stem cells with the integration of programming factors into the AAVS1 locus providing a safer and more reproducible route to the clinic. Stem Cells 2017;35:886-897.


Asunto(s)
Diferenciación Celular , Eritrocitos/citología , Eritrocitos/metabolismo , Células Madre Pluripotentes Inducidas/citología , Factores de Transcripción de Tipo Kruppel/metabolismo , Núcleo Celular/metabolismo , Proliferación Celular , Eritropoyesis/genética , Regulación de la Expresión Génica , Globinas/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Células K562 , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo
11.
Mol Ther ; 24(5): 978-90, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26898221

RESUMEN

Despite the increasing importance of long noncoding RNA in physiology and disease, their role in endothelial biology remains poorly understood. Growing evidence has highlighted them to be essential regulators of human embryonic stem cell differentiation. SENCR, a vascular-enriched long noncoding RNA, overlaps the Friend Leukemia Integration virus 1 (FLI1) gene, a regulator of endothelial development. Therefore, we wanted to test the hypothesis that SENCR may contribute to mesodermal and endothelial commitment as well as in endothelial function. We thus developed new differentiation protocols allowing generation of endothelial cells from human embryonic stem cells using both directed and hemogenic routes. The expression of SENCR was markedly regulated during endothelial commitment using both protocols. SENCR did not control the pluripotency of pluripotent cells; however its overexpression significantly potentiated early mesodermal and endothelial commitment. In human umbilical endothelial cell (HUVEC), SENCR induced proliferation, migration, and angiogenesis. SENCR expression was altered in vascular tissue and cells derived from patients with critical limb ischemia and premature coronary artery disease compared to controls. Here, we showed that SENCR contributes to the regulation of endothelial differentiation from pluripotent cells and controls the angiogenic capacity of HUVEC. These data give novel insight into the regulatory processes involved in endothelial development and function.


Asunto(s)
Células Endoteliales/fisiología , Neovascularización Patológica/genética , ARN Largo no Codificante/genética , Diferenciación Celular , Línea Celular , Proliferación Celular , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Transducción de Señal
12.
Glia ; 61(3): 368-82, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23281012

RESUMEN

Spinal cord injury (SCI) is a devastating condition with limited capacity for repair. Cell transplantation is a potential strategy to promote SCI repair with cells from the olfactory system being promising candidates. Although transplants of human olfactory mucosa (OM) are already ongoing in clinical trials, the repair potential of this tissue remains unclear. Previously, we identified mesenchymal-like stem cells that reside in the lamina propria (LP-MSCs) of rat and human OM. Little is known about these cells or their interactions with glia such as olfactory ensheathing cells (OECs), which would be co-transplanted with MSCs from the OM, or endogenous CNS glia such as oligodendrocytes. We have characterized, purified, and assessed the repair potential of human LP-MSCs by investigating their effect on glial cell biology with specific emphasis on CNS myelination in vitro. Purified LP-MSCs expressed typical bone marrow MSC (BM-MSC) markers, formed spheres, were clonogenic and differentiated into bone and fat. LP-MSC conditioned medium (CM) promoted oligodendrocyte precursor cell (OPC) and OEC proliferation and induced a highly branched morphology. LP-MSC-CM treatment caused OEC process extension. Both LP and BM-MSCs promoted OPC proliferation and differentiation, but only myelinating cultures treated with CM from LP and not BM-MSCs had a significant increase in myelination. Comparison with fibroblasts and contaminating OM fibroblast like-cells showed the promyelination effect was LP-MSC specific. Thus LP-MSCs harvested from human OM biopsies may be an important candidate for cell transplantation by contributing to the repair of SCI.


Asunto(s)
Huesos/citología , Células Madre Mesenquimatosas/citología , Vaina de Mielina/patología , Neuroglía/citología , Mucosa Olfatoria/citología , Traumatismos de la Médula Espinal/patología , Adolescente , Adulto , Anciano , Animales , Trasplante Óseo , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Masculino , Trasplante de Células Madre Mesenquimatosas , Persona de Mediana Edad , Neuroglía/trasplante , Mucosa Olfatoria/trasplante , Ratas , Cicatrización de Heridas
13.
Stem Cells ; 30(4): 643-54, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22232059

RESUMEN

MicroRNAs (miRNAs) are short noncoding RNAs, which post-transcriptionally regulate gene expression. miRNAs are transcribed as precursors and matured to active forms by a series of enzymes, including Dicer. miRNAs are important in governing cell differentiation, development, and disease. We have recently developed a feeder- and serum-free protocol for direct derivation of endothelial cells (ECs) from human embryonic stem cells (hESCs) and provided evidence of increases in angiogenesis-associated miRNAs (miR-126 and -210) during the process. However, the functional role of miRNAs in hESC differentiation to vascular EC remains to be fully interrogated. Here, we show that the reduction of miRNA maturation induced by Dicer knockdown suppressed hES-EC differentiation. A miRNA microarray was performed to quantify hES-EC miRNA profiles during defined stages of endothelial differentiation. miR-99b, -181a, and -181b were identified as increasing in a time- and differentiation-dependent manner to peak in mature hESC-ECs and adult ECs. Augmentation of miR-99b, -181a, and -181b levels by lentiviral-mediated transfer potentiated the mRNA and protein expression of EC-specific markers, Pecam1 and VE Cadherin, increased nitric oxide production, and improved hES-EC-induced therapeutic neovascularization in vivo. Conversely, knockdown did not impact endothelial differentiation. Our results suggest that miR-99b, -181a, and -181b comprise a component of an endothelial-miRNA signature and are capable of potentiating EC differentiation from pluripotent hESCs.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Endoteliales/citología , MicroARNs/genética , Adulto , Biomarcadores/metabolismo , Línea Celular , Linaje de la Célula/genética , ARN Helicasas DEAD-box/metabolismo , Células Endoteliales/metabolismo , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Lentivirus/genética , MicroARNs/metabolismo , Neovascularización Fisiológica/genética , Óxido Nítrico/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Reproducibilidad de los Resultados , Ribonucleasa III/metabolismo , Transcriptoma/genética
14.
Biomed Chromatogr ; 26(5): 545-7, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-21830228

RESUMEN

Omacetaxine is a natural product extract originating from Chinese medicine and finding therapeutic use as a potent myelosuppressive agent in leukemia. When planning in vitro cell biology experiments to assess omacetaxine activity against primary leukemic stem cells, it became apparent that the literature rarely describes the in vitro stability of the molecule, although accessible chromatographic methods have been published. Clearly whole organisms vs their component cells will differ in the way in which they handle xenobiotics, with the latter more dependent on physiochemical parameters such as pH and temperature in the absence of active metabolism or excretion. This could impact on the cells' experience of drug in culture. We therefore report here on examination of a modified, high-performance liquid chromatography (HPLC) method with assessment of degradant production from a 72 h solution stability study, clearly demonstrating that omacetaxine is highly stable in representative cell culture conditions (37 °C, neutral pH) and persists for many days in marked contrast to its short-half life in vivo.


Asunto(s)
Harringtoninas/química , Cromatografía Líquida de Alta Presión , Estabilidad de Medicamentos , Homoharringtonina , Concentración de Iones de Hidrógeno , Soluciones/química , Espectrofotometría Ultravioleta , Temperatura
15.
Front Cardiovasc Med ; 9: 953211, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36299872

RESUMEN

Background: Mechanisms contributing to tissue remodeling of the infarcted heart following cell-based therapy remain elusive. While cell-based interventions have the potential to influence the cardiac healing process, there is little direct evidence of preservation of functional myocardium. Aim: The aim of the study was to investigate tissue remodeling in the infarcted heart following human embryonic stem cell-derived endothelial cell product (hESC-ECP) therapy. Materials and methods: Following coronary artery ligation (CAL) to induce cardiac ischemia, we investigated infarct size at 1 day post-injection in media-injected controls (CALM, n = 11), hESC-ECP-injected mice (CALC, n = 10), and dead hESC-ECP-injected mice (CALD, n = 6); echocardiography-based functional outcomes 14 days post-injection in experimental (CALM, n = 13; CALC, n = 17) and SHAM surgical mice (n = 4); and mature infarct size (CALM and CALC, both n = 6). We investigated ligand-receptor interactions (LRIs) in hESC-ECP cell populations, incorporating a publicly available C57BL/6J mouse cardiomyocyte-free scRNAseq dataset with naive, 1 day, and 3 days post-CAL hearts. Results: Human embryonic stem cell-derived endothelial cell product injection reduces the infarct area (CALM: 54.5 ± 5.0%, CALC: 21.3 ± 4.9%), and end-diastolic (CALM: 87.8 ± 8.9 uL, CALC: 63.3 ± 2.7 uL) and end-systolic ventricular volume (CALM: 56.4 ± 9.3 uL, CALC: 33.7 ± 2.6 uL). LRI analyses indicate an alternative immunomodulatory effect mediated via viable hESC-ECP-resident signaling. Conclusion: Delivery of the live hESC-ECP following CAL modulates the wound healing response during acute pathological remodeling, reducing infarct area, and preserving functional myocardium in this relatively acute model. Potential intrinsic myocardial cellular/hESC-ECP interactions indicate that discreet immunomodulation could provide novel therapeutic avenues to improve cardiac outcomes following myocardial infarction.

16.
Cardiovasc Res ; 118(14): 2960-2972, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-35212715

RESUMEN

AIMS: Coronary vasculature formation is a critical event during cardiac development, essential for heart function throughout perinatal and adult life. However, current understanding of coronary vascular development has largely been derived from transgenic mouse models. The aim of this study was to characterize the transcriptome of the human foetal cardiac endothelium using single-cell RNA sequencing (scRNA-seq) to provide critical new insights into the cellular heterogeneity and transcriptional dynamics that underpin endothelial specification within the vasculature of the developing heart. METHODS AND RESULTS: We acquired scRNA-seq data of over 10 000 foetal cardiac endothelial cells (ECs), revealing divergent EC subtypes including endocardial, capillary, venous, arterial, and lymphatic populations. Gene regulatory network analyses predicted roles for SMAD1 and MECOM in determining the identity of capillary and arterial populations, respectively. Trajectory inference analysis suggested an endocardial contribution to the coronary vasculature and subsequent arterialization of capillary endothelium accompanied by increasing MECOM expression. Comparative analysis of equivalent data from murine cardiac development demonstrated that transcriptional signatures defining endothelial subpopulations are largely conserved between human and mouse. Comprehensive characterization of the transcriptional response to MECOM knockdown in human embryonic stem cell-derived EC (hESC-EC) demonstrated an increase in the expression of non-arterial markers, including those enriched in venous EC. CONCLUSIONS: scRNA-seq of the human foetal cardiac endothelium identified distinct EC populations. A predicted endocardial contribution to the developing coronary vasculature was identified, as well as subsequent arterial specification of capillary EC. Loss of MECOM in hESC-EC increased expression of non-arterial markers, suggesting a role in maintaining arterial EC identity.


Asunto(s)
Células Endoteliales , Corazón , Humanos , Animales , Ratones , Células Endoteliales/metabolismo , Transcriptoma , Endotelio Vascular/metabolismo , Factores de Transcripción/metabolismo , Ratones Transgénicos , Proteína del Locus del Complejo MDS1 y EV11/metabolismo
17.
Arterioscler Thromb Vasc Biol ; 30(7): 1389-97, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20431067

RESUMEN

OBJECTIVE: To develop an embryoid body-free directed differentiation protocol for the rapid generation of functional vascular endothelial cells derived from human embryonic stem cells (hESCs) and to assess the system for microRNA regulation and angiogenesis. METHODS AND RESULTS: The production of defined cell lineages from hESCs is a critical requirement for evaluating their potential in regenerative medicine. We developed a feeder- and serum-free protocol. Directed endothelial differentiation of hESCs revealed rapid loss of pluripotency markers and progressive induction of mRNA and protein expression of vascular markers (including CD31 and vascular endothelial [VE]-cadherin) and angiogenic growth factors (including vascular endothelial growth factor), increased expression of angiogenesis-associated microRNAs (including miR-126 and miR-210), and induction of endothelial cell morphological features. In vitro, differentiated cells produced nitric oxide, migrated across a wound, and formed tubular structures in both the absence and the presence of 3D matrices (Matrigel). In vivo, we showed that cells that differentiated for 10 days before implantation were efficient at the induction of therapeutic neovascularization and that hESC-derived cells were incorporated into the blood-perfused vasculature of recipient mice. CONCLUSIONS: The directed differentiation of hESCs is efficient and effective for the differentiation of functional endothelial cells from hESCs.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/metabolismo , Células Endoteliales/metabolismo , Isquemia/fisiopatología , MicroARNs/metabolismo , Músculo Esquelético/irrigación sanguínea , Neovascularización Fisiológica , Cicatrización de Heridas , Proteínas Angiogénicas/genética , Proteínas Angiogénicas/metabolismo , Animales , Diferenciación Celular/genética , Línea Celular , Linaje de la Célula , Movimiento Celular , Forma de la Célula , Medio de Cultivo Libre de Suero , Modelos Animales de Enfermedad , Células Madre Embrionarias/trasplante , Células Endoteliales/trasplante , Regulación del Desarrollo de la Expresión Génica , Miembro Posterior , Humanos , Isquemia/genética , Isquemia/metabolismo , Isquemia/cirugía , Ratones , Neovascularización Fisiológica/genética , Óxido Nítrico/metabolismo , ARN Mensajero/metabolismo , Trasplante de Células Madre , Factores de Tiempo , Transfección , Cicatrización de Heridas/genética
18.
Transfus Apher Sci ; 45(1): 85-9, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21723197

RESUMEN

Blood transfusion is a mainstay of modern clinical medicine. However, a number of fundamental problems persist, including insufficiency of supply, the threat of transfusion transmissible infectious disease and the problem of immune incompatibility. It would be extremely valuable, therefore, to develop a potentially limitless, infection free, immune neutral source of erythrocytes for transfusion. Human embryonic stem cells (hESC), have potentially limitless proliferative capacity and the potential to differentiate into the majority of adult cell types including erythrocytes. A number of barriers to the development of clinical cellular therapeutics from hESC have been posited, including HLA incompatibility between donor and recipient, difficulties in defining optimal cell phenotype and function in vitro and the fact that most tissues consist of complex three-dimensional matrices of cells. Many or most of these problems are circumvented in the generation of erythrocytes and group O RhD negative Kell negative blood would be compatible with the majority of recipients. Red cell transfusion is therefore an attractive goal for pluripotent stem cell derived therapeutics. Much progress has been made however, a number of challenges remain including scale up, ensuring clinical effectiveness and product safety.


Asunto(s)
Transfusión Sanguínea/métodos , Células Madre Embrionarias/citología , Eritrocitos/citología , Células Madre Hematopoyéticas/citología , Adulto , Femenino , Humanos , Masculino
19.
Mol Ther ; 18(12): 2139-45, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20978477

RESUMEN

Retroviral vectors remain the most efficient and widely applied system for induction of pluripotency. However, mutagenic effects have been documented in both laboratory and clinical gene therapy studies, principally as a result of dysregulated host gene expression in the proximity of defined integration sites. Here, we report that cells with characteristics of pluripotent stem cells can be produced from normal human fibroblasts in the absence of reprogramming transcription factors (TFs) during lentiviral (LV) vector-mediated gene transfer. This occurred via induced alterations in host gene and microRNA (miRNA) expression and detrimental changes in karyotype. These findings demonstrate that vector-induced genotoxicity may alone play a role in somatic cell reprogramming derivation and urges caution when using integrating vectors in this setting. Clearer understanding of this process may additionally reveal novel insights into reprogramming pathways.


Asunto(s)
Reprogramación Celular , Fibroblastos/citología , Lentivirus/genética , Células Madre Pluripotentes/citología , Factores de Transcripción/genética , Perfilación de la Expresión Génica , Humanos , MicroARNs/genética
20.
Biochem J ; 432(1): 21-33, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20854259

RESUMEN

The propensity of human embryonic stem cells to die upon enzymatic disaggregation or low-density plating is an obstacle to their isolation and routine use in drug discovery and basic research. Equally, the very low rate of establishment of implanted cells hinders cell therapy. In the present study we have developed a high-content assay for human embryonic stem cell survival and used this to screen a range of libraries of 'lead-like' small molecules and known bioactives. From this we identified 18 confirmed hits with four structural classes being represented by multiple compounds: a series of 5-(acyl/alkyl-amino)indazoles, compounds with a 4-(acylamino)pyridine core, simple N6,N6-dialkyladenines and compounds with a 5-(acylamino)indolinone core. In vitro kinase profiling indicated that the ROCK (Rho-associated kinase)/PRK2 (protein kinase C-related kinase 2) protein kinases are of pivotal importance for cell survival and identified previously unreported compound classes that inhibited this important biological activity. An evaluation using an extensive panel of protein kinases showed that six of our hit compounds exhibited better selectivity for ROCK inhibition than the routinely used commercially available ROCK inhibitor Y-27632. In this screen we also identified the K(+)-ATP channel opener pinacidil and show that it probably promotes cell survival, by 'off-target' inhibition of ROCK/PRK2. We have therefore identified novel pro-survival compounds of greater specificity, equivalent potency and reduced toxicity relative to the routinely employed ROCK inhibitor Y-27632.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Células Madre Embrionarias/efectos de los fármacos , Compuestos Heterocíclicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Amidas/farmacología , Técnicas de Cultivo de Célula , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Compuestos Heterocíclicos/química , Humanos , Indazoles/química , Indazoles/farmacología , Estructura Molecular , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Inhibidores de Proteínas Quinasas/química , Piridinas/química , Piridinas/farmacología , Factores de Tiempo , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA