Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(22): e2310864121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38781213

RESUMEN

IL-22 plays a critical role in defending against mucosal infections, but how IL-22 production is regulated is incompletely understood. Here, we show that mice lacking IL-33 or its receptor ST2 (IL-1RL1) were more resistant to Streptococcus pneumoniae lung infection than wild-type animals and that single-nucleotide polymorphisms in IL33 and IL1RL1 were associated with pneumococcal pneumonia in humans. The effect of IL-33 on S. pneumoniae infection was mediated by negative regulation of IL-22 production in innate lymphoid cells (ILCs) but independent of ILC2s as well as IL-4 and IL-13 signaling. Moreover, IL-33's influence on IL-22-dependent antibacterial defense was dependent on housing conditions of the mice and mediated by IL-33's modulatory effect on the gut microbiota. Collectively, we provide insight into the bidirectional crosstalk between the innate immune system and the microbiota. We conclude that both genetic and environmental factors influence the gut microbiota, thereby impacting the efficacy of antibacterial immune defense and susceptibility to pneumonia.


Asunto(s)
Inmunidad Innata , Proteína 1 Similar al Receptor de Interleucina-1 , Interleucina-22 , Interleucina-33 , Interleucinas , Streptococcus pneumoniae , Animales , Interleucina-33/inmunología , Interleucina-33/genética , Interleucina-33/metabolismo , Interleucinas/metabolismo , Interleucinas/inmunología , Interleucinas/genética , Ratones , Streptococcus pneumoniae/inmunología , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/genética , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Humanos , Ratones Noqueados , Microbiota/inmunología , Ratones Endogámicos C57BL , Neumonía Neumocócica/inmunología , Neumonía Neumocócica/microbiología , Microbioma Gastrointestinal/inmunología , Linfocitos/inmunología , Linfocitos/metabolismo , Polimorfismo de Nucleótido Simple
2.
BMC Genomics ; 24(1): 566, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37740234

RESUMEN

BACKGROUND: Olive oil contains monounsaturated oleic acid up to 83% and phenolic compounds, making it an excellent source of fat. Due to its economic importance, the quantity and quality of olive oil should be improved in parallel with international standards. In this study, we analyzed the raw RNA-seq data with a meta-analysis approach to identify important genes and their metabolic pathways involved in olive oil quality. RESULTS: A deep search of RNA-seq published data shed light on thirty-nine experiments associated with the olive transcriptome, four of these proved to be ideal for meta-analysis. Meta-analysis confirmed the genes identified in previous studies and released new genes, which were not identified before. According to the IDR index, the meta-analysis had good power to identify new differentially expressed genes. The key genes were investigated in the metabolic pathways and were grouped into four classes based on the biosynthetic cycle of fatty acids and factors that affect oil quality. Galactose metabolism, glycolysis pathway, pyruvate metabolism, fatty acid biosynthesis, glycerolipid metabolism, and terpenoid backbone biosynthesis were the main pathways in olive oil quality. In galactose metabolism, raffinose is a suitable source of carbon along with other available sources for carbon in fruit development. The results showed that the biosynthesis of acetyl-CoA in glycolysis and pyruvate metabolism is a stable pathway to begin the biosynthesis of fatty acids. Key genes in oleic acid production as an indicator of oil quality and critical genes that played an important role in production of triacylglycerols were identified in different developmental stages. In the minor compound, the terpenoid backbone biosynthesis was investigated and important enzymes were identified as an interconnected network that produces important precursors for the synthesis of a monoterpene, diterpene, triterpene, tetraterpene, and sesquiterpene biosynthesis. CONCLUSIONS: The results of the current investigation can produce functional data related to the quality of olive oil and would be a useful step in reducing the time of cultivar screening by developing gene specific markers in olive breeding programs, releasing also new genes that could be applied in the genome editing approach.


Asunto(s)
Olea , Olea/genética , Galactosa , Aceite de Oliva , Transcriptoma , Fitomejoramiento , Carbono , Ácidos Grasos , Ácidos Oléicos , Terpenos , Piruvatos
3.
BMC Plant Biol ; 23(1): 452, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37749509

RESUMEN

BACKGROUND: Olive is one of the most cultivated species in the Mediterranean Basin and beyond. Despite being extensively studied for its commercial relevance, the origin of cultivated olive and the history of its domestication remain open questions. Here, we present a genealogical and kinship relationships analysis by mean of chloroplast and nuclear markers of different genera, subgenus, species, subspecies, ecotypes, cultivated, ancient and wild types, which constitutes one of the most inclusive research to date on the diversity within Olea europaea species. A complete survey of the variability across the nuclear and plastid genomes of different genotypes was studied through single nucleotide polymorphisms, indels (insertions and deletions), and length variation. RESULTS: Fifty-six different chlorotypes were identified among the Oleaceae family including Olea europaea, other species and genera. The chloroplast genome evolution, within Olea europaea subspecies, probably started from subsp. cuspidata, which likely represents the ancestor of all the other subspecies and therefore of wild types and cultivars. Our study allows us to hypothesize that, inside the subspecies europaea containing cultivars and the wild types, the ancestral selection from var. sylvestris occurred both in the eastern side of the Mediterranean and in the central-western part of Basin. Moreover, it was elucidated the origin of several cultivars, which depends on the introduction of eastern cultivars, belonging to the lineage E1, followed by crossing and replacement of the autochthonous olive germplasm of central-western Mediterranean Basin. In fact, our study highlighted that two main 'founders' gave the origin to more than 60% of analyzed olive cultivars. Other secondary founders, which strongly contributed to give origin to the actual olive cultivar diversity, were already detected. CONCLUSIONS: The application of comparative genomics not only paves the way for a better understanding of the phylogenetic relationships within the Olea europaea species but also provides original insights into other elusive evolutionary processes, such as chloroplast inheritance and parentage inside olive cultivars, opening new scenarios for further research such as the association studies and breeding programs.


Asunto(s)
Olea , Oleaceae , Olea/genética , Filogenia , Fitomejoramiento , Cloroplastos/genética
4.
New Phytol ; 238(5): 2047-2063, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36880371

RESUMEN

The bioactive properties of olive (Olea europaea) fruits and olive oil are largely attributed to terpenoid compounds, including diverse triterpenoids such as oleanolic, maslinic and ursolic acids, erythrodiol, and uvaol. They have applications in the agri-food, cosmetics, and pharmaceutical industries. Some key steps involved in the biosynthesis of these compounds are still unknown. Genome mining, biochemical analysis, and trait association studies have been used to identify major gene candidates controlling triterpenoid content of olive fruits. Here, we identify and functionally characterize an oxidosqualene cyclase (OeBAS) required for the production of the major triterpene scaffold ß-amyrin, the precursor of erythrodiol, oleanolic and maslinic acids, and a cytochrome P450 (CYP716C67) that mediates 2α oxidation of the oleanane- and ursane-type triterpene scaffolds to produce maslinic and corosolic acids, respectively. To confirm the enzymatic functions of the entire pathway, we have reconstituted the olive biosynthetic pathway for oleanane- and ursane-type triterpenoids in the heterologous host, Nicotiana benthamiana. Finally, we have identified genetic markers associated with oleanolic and maslinic acid fruit content on the chromosomes carrying the OeBAS and CYP716C67 genes. Our results shed light on the biosynthesis of olive triterpenoids and provide new gene targets for germplasm screening and breeding for high triterpenoid content.


Asunto(s)
Olea , Triterpenos , Olea/genética , Frutas/metabolismo , Fitomejoramiento , Triterpenos/metabolismo
5.
Curr Top Microbiol Immunol ; 431: 233-263, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33620654

RESUMEN

Human infections with the food-borne pathogen Campylobacter jejuni are progressively increasing worldwide and constitute a significant socioeconomic burden to mankind. Intestinal campylobacteriosis in humans is characterized by bloody diarrhea, fever, abdominal pain, and severe malaise. Some individuals develop chronic post-infectious sequelae including neurological and autoimmune diseases such as reactive arthritis and Guillain-Barré syndrome. Studies unraveling the molecular mechanisms underlying campylobacteriosis and post-infectious sequelae have been hampered by the scarcity of appropriate experimental in vivo models. Particularly, conventional laboratory mice are protected from C. jejuni infection due to the physiological colonization resistance exerted by the murine gut microbiota composition. Additionally, as compared to humans, mice are up to 10,000 times more resistant to C. jejuni lipooligosaccharide (LOS) constituting a major pathogenicity factor responsible for the immunopathological host responses during campylobacteriosis. In this chapter, we summarize the recent progress that has been made in overcoming these fundamental obstacles in Campylobacter research in mice. Modification of the murine host-specific gut microbiota composition and sensitization of the mice to C. jejuni LOS by deletion of genes encoding interleukin-10 or a single IL-1 receptor-related molecule as well as by dietary zinc depletion have yielded reliable murine infection models resembling key features of human campylobacteriosis. These substantial improvements pave the way for a better understanding of the molecular mechanisms underlying pathogen-host interactions. The ongoing validation and standardization of these novel murine infection models will provide the basis for the development of innovative treatment and prevention strategies to combat human campylobacteriosis and collateral damages of C. jejuni infections.


Asunto(s)
Infecciones por Campylobacter , Campylobacter jejuni , Animales , Modelos Animales de Enfermedad , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL
6.
Sensors (Basel) ; 22(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36236259

RESUMEN

Extra virgin olive oil (EVOO) is the best vegetable oil worldwide but, at the same time, is one of the product victims of fraud in the agri-food sector, and the differences about quality within the extra-virgin olive oil category are often missed. Several scientific techniques were applied in order to guarantee the authenticity and quality of this EVOO. In the present study, the volatile compounds (VOCs) by gas chromatography-mass spectrometry with solid-phase micro-extraction detection (GC-MS SPME), organoleptic analysis by the official Slow Food panel and the detection by a Small Sensor System (S3) were applied. Ten EVOOs from Umbria, a central Italian region, were selected from the 2021 Slow Food Italian extra virgin olive oil official guide, which includes hundreds of high-quality olive oils. The results demonstrated the possibility to discriminate the ten EVOOs, even if they belong to the same Italian region, by all three techniques. The result of GC-MS SPME detection was comparable at the discrimination level to the organoleptic test with few exceptions, while the S3 was able to better separate some EVOOs, which were not discriminated perfectly by the other two methods. The correlation analysis performed among and between the three methodologies allowed us to identify 388 strong associations with a p value less than 0.05. This study has highlighted how much the mix of VOCs was different even among few and localized EVOOs. The correlation with the sensor detection, which is faster and chipper compared to the other two techniques, elucidated the similarities and discrepancies between the applied methods.


Asunto(s)
Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas/métodos , Aceite de Oliva/análisis , Aceites de Plantas , Microextracción en Fase Sólida/métodos , Compuestos Orgánicos Volátiles/análisis
7.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206478

RESUMEN

Prevalences of Campylobacter (C.) jejuni infections are progressively rising globally. Given that probiotic feed additives, such as the commercial product Aviguard®, have been shown to be effective in reducing enteropathogens, such as Salmonella, in vertebrates, including livestock, we assessed potential anti-pathogenic and immune-modulatory properties of Aviguard® during acute C. jejuni-induced murine enterocolitis. Therefore, microbiota-depleted IL-10-/- mice were infected with C. jejuni strain 81-176 by gavage and orally treated with Aviguard® or placebo from day 2 to 4 post-infection. The applied probiotic bacteria could be rescued from the intestinal tract of treated mice, but with lower obligate anaerobic bacterial counts in C. jejuni-infected as compared to non-infected mice. Whereas comparable gastrointestinal pathogen loads could be detected in both groups until day 6 post-infection, Aviguard® treatment resulted in improved clinical outcome and attenuated apoptotic cell responses in infected large intestines during acute campylobacteriosis. Furthermore, less distinct pro-inflammatory immune responses could be observed not only in the intestinal tract, but also in extra-intestinal compartments on day 6 post-infection. In conclusion, we show here for the first time that Aviguard® exerts potent disease-alleviating effects in acute C. jejuni-induced murine enterocolitis and might be a promising probiotic treatment option for severe campylobacteriosis in humans.


Asunto(s)
Infecciones por Campylobacter/microbiología , Infecciones por Campylobacter/terapia , Campylobacter jejuni/fisiología , Enterocolitis/microbiología , Enterocolitis/terapia , Probióticos/uso terapéutico , Animales , Biomarcadores , Infecciones por Campylobacter/diagnóstico , Citocinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Enterocolitis/diagnóstico , Microbioma Gastrointestinal , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunidad , Mediadores de Inflamación/metabolismo , Interleucina-10/deficiencia , Yeyuno/microbiología , Yeyuno/patología , Ratones , Ratones Noqueados
8.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35008580

RESUMEN

Climate change, currently taking place worldwide and also in the Mediterranean area, is leading to a reduction in water availability and to groundwater salinization. Olive represents one of the most efficient tree crops to face these scenarios, thanks to its natural ability to tolerate moderate salinity and drought. In the present work, four olive cultivars (Koroneiki, Picual, Royal de Cazorla and Fadak86) were exposed to high salt stress conditions (200 mM of NaCl) in greenhouse, in order to evaluate their tolerance level and to identify key genes involved in salt stress response. Molecular and physiological parameters, as well as plant growth and leaves' ions Na+ and K+ content were measured. Results of the physiological measurements showed Royal de Cazorla as the most tolerant cultivar, and Fadak86 and Picual as the most susceptible ones. Ten candidate genes were analyzed and their complete genomic, CDS and protein sequences were identified. The expression analysis of their transcripts through reverse transcriptase quantitative PCR (RT-qPCR) demonstrated that only OeNHX7, OeP5CS, OeRD19A and OePetD were upregulated in tolerant cultivars, thus suggesting their key role in the activation of a salt tolerance mechanism.


Asunto(s)
Olea/genética , Estrés Salino/genética , Sequías , Regulación de la Expresión Génica de las Plantas/genética , Hojas de la Planta/genética , Raíces de Plantas/genética , Salinidad , Tolerancia a la Sal/genética , Sodio/metabolismo
9.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34445577

RESUMEN

Infections by the zoonotic foodborne bacterium Campylobacter jejuni (C. jejuni) are among the most frequent causes of bacterial gastroenteritis worldwide. The aim was to evaluate the relationship between epithelial barrier disruption, mucosal immune activation, and vitamin D (VD) treatment during C. jejuni infection, using intestinal epithelial cells and mouse models focused on the interaction of C. jejuni with the VD signaling pathway and VD treatment to improve C. jejuni-induced barrier dysfunction. Our RNA-Seq data from campylobacteriosis patients demonstrate inhibition of VD receptor (VDR) downstream targets, consistent with suppression of immune function. Barrier-preserving effects of VD addition were identified in C. jejuni-infected epithelial cells and IL-10-/- mice. Furthermore, interference of C. jejuni with the VDR pathway was shown via VDR/retinoid X receptor (RXR) interaction. Paracellular leakiness of infected epithelia correlated with tight junction (TJ) protein redistribution off the TJ domain and apoptosis induction. Supplementation with VD reversed barrier impairment and prevented inhibition of the VDR pathway, as shown by restoration of transepithelial electrical resistance and fluorescein (332 Da) permeability. We conclude that VD treatment restores gut epithelial barrier functionality and decreases bacterial transmigration and might, therefore, be a promising compound for C. jejuni treatment in humans and animals.


Asunto(s)
Infecciones por Campylobacter/complicaciones , Permeabilidad de la Membrana Celular , Células Epiteliales/efectos de los fármacos , Interleucina-10/fisiología , Mucosa Intestinal/efectos de los fármacos , Vitamina D/farmacología , Animales , Infecciones por Campylobacter/microbiología , Campylobacter jejuni/aislamiento & purificación , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Uniones Estrechas/metabolismo , Vitaminas/farmacología
10.
Int J Mol Sci ; 21(2)2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31936044

RESUMEN

The epithelial sodium channel (ENaC) can increase the colonic absorptive capacity for salt and water. Campylobacter concisus is a common pathogenic epsilonproteobacterium, causing enteritis and diarrhea. It can induce barrier dysfunction in the intestine, but its influence on intestinal transport function is still unknown. Therefore, our study aimed to characterize C. concisus effects on ENaC using the HT-29/B6-GR/MR (epithelial cell line HT-29/B6 transfected with glucocorticoid and mineralocorticoid receptors) cell model and mouse colon. In Ussing chambers, C. concisus infection inhibited ENaC-dependent Na+ transport as indicated by a reduction in amiloride-sensitive short circuit current (-55%, n = 15, p < 0.001). This occurred via down-regulation of ß- and γ-ENaC mRNA expression and ENaC ubiquitination due to extracellular signal-regulated kinase (ERK)1/2 activation, predicted by Ingenuity Pathway Analysis (IPA). In parallel, C. concisus reduced the expression of the sealing tight junction (TJ) protein claudin-8 and induced claudin-8 redistribution off the TJ domain of the enterocytes, which facilitates the back leakage of Na+ ions into the intestinal lumen. In conclusion, C. concisus caused ENaC dysfunction via interleukin-32-regulated ERK1/2, as well as claudin-8-dependent barrier dysfunction-both of which contribute to Na+ malabsorption and diarrhea.


Asunto(s)
Infecciones por Campylobacter/metabolismo , Campylobacter/fisiología , Claudinas/metabolismo , Canales Epiteliales de Sodio/metabolismo , Sodio/metabolismo , Animales , Infecciones por Campylobacter/microbiología , Colon/metabolismo , Colon/microbiología , Diarrea/metabolismo , Diarrea/microbiología , Células HT29 , Interacciones Huésped-Patógeno , Humanos , Absorción Intestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Ratones , Ratones Endogámicos C57BL
11.
Int J Mol Sci ; 20(19)2019 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-31569415

RESUMEN

Campylobacter jejuni (C. jejuni) is the most common cause of foodborne gastroenteritis worldwide. The bacteria induce diarrhea and inflammation by invading the intestinal epithelium. Curcumin is a natural polyphenol from turmeric rhizome of Curcuma longa, a medical plant, and is commonly used in curry powder. The aim of this study was the investigation of the protective effects of curcumin against immune-induced epithelial barrier dysfunction in C. jejuni infection. The indirect C. jejuni-induced barrier defects and its protection by curcumin were analyzed in co-cultures with HT-29/B6-GR/MR epithelial cells together with differentiated THP-1 immune cells. Electrophysiological measurements revealed a reduction in transepithelial electrical resistance (TER) in infected co-cultures. An increase in fluorescein (332 Da) permeability in co-cultures as well as in the germ-free IL-10-/- mouse model after C. jejuni infection was shown. Curcumin treatment attenuated the C. jejuni-induced increase in fluorescein permeability in both models. Moreover, apoptosis induction, tight junction redistribution, and an increased inflammatory response-represented by TNF-α, IL-1ß, and IL-6 secretion-was observed in co-cultures after infection and reversed by curcumin. In conclusion, curcumin protects against indirect C. jejuni-triggered immune-induced barrier defects and might be a therapeutic and protective agent in patients.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Infecciones por Campylobacter/inmunología , Campylobacter jejuni/inmunología , Curcumina/farmacología , Membrana Mucosa/efectos de los fármacos , Membrana Mucosa/inmunología , Animales , Apoptosis , Infecciones por Campylobacter/microbiología , Línea Celular , Técnicas de Cocultivo , Citocinas/biosíntesis , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Ratones , Ratones Noqueados , Membrana Mucosa/microbiología , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas/genética , Uniones Estrechas/metabolismo
12.
Ann Bot ; 119(8): 1305-1318, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28387783

RESUMEN

Background and Aims: Olive is considered a native plant of the eastern side of the Mediterranean basin, from where it should have spread westward along the Mediterranean shores, while little is known about its diffusion in the eastern direction. Methods: Genetic diversity levels and population genetic structure of a wide set of olive ecotypes and varieties collected from several provinces of Iran, representing a high percentage of the entire olive resources present in the area, was screened with 49 chloroplast and ten nuclear simple sequence repeat markers, and coupled with archaeo-botanical and historical data on Mediterranean olive varieties. Approximate Bayesian Computation was applied to define the demographic history of olives including Iranian germplasm, and species distribution modelling was performed to understand the impact of the Late Quaternary on olive distribution. Key Results: The results of the present study demonstrated that: (1) the climatic conditions of the last glacial maximum had an important role on the actual olive distribution, (2) all Iranian olive samples had the same maternal inheritance as Mediterranean cultivars, and (3) the nuclear gene flow from the Mediterranean basin to the Iranian plateau was almost absent, as well as the contribution of subspecies cuspidata to the diversity of Iranian olives. Conclusions: Based on this evidence, a new scenario for the origin and distribution of this important fruit crop has been traced. The evaluation of olive trees growing in the eastern part of the Levant highlighted a new perspective on the spread and distribution of olive, suggesting two routes of olive differentiation, one westward, spreading along the Mediterranean basin, and another moving towards the east and reaching the Iranian plateau before its domestication.


Asunto(s)
Variación Genética , Olea/genética , Teorema de Bayes , ADN de Cloroplastos/genética , Flujo Génico , Patrón de Herencia , Irán , Repeticiones de Microsatélite
13.
Eur J Microbiol Immunol (Bp) ; 14(2): 166-179, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38466378

RESUMEN

Incidence rates of human Campylobacter jejuni infections are progressively increasing globally. Since the risk for the development of post-infectious autoimmune diseases correlates with the severity of the preceding enteritis and campylobacteriosis treatment usually involves symptomatic measures, it is desirable to apply antibiotic-independent compounds to treat or even prevent disease. Given its health-promoting including anti-inflammatory properties carvacrol constitutes a promising candidate. This prompted us to test the disease-alleviating including immune-modulatory effects of carvacrol prophylaxis in acute murine campylobacteriosis. Therefore, human gut microbiota-associated IL-10-/- mice were orally challenged with synthetic carvacrol starting a week before C. jejuni infection and followed up until day 6 post-infection. Whereas carvacrol prophylaxis did neither affect gastrointestinal pathogen loads, nor the human commensal gut microbiota composition, it improved the clinical outcome of mice, attenuated colonic epithelial cell apoptosis, and dampened pro-inflammatory immune responses not only in the intestinal tract but also in extra-intestinal organs including the liver and the spleen. In conclusion, our preclinical placebo-controlled intervention study provides convincing evidence that oral carvacrol pretreatment constitutes a promising option to mitigate acute campylobacteriosis and in turn, to reduce the risk for post-infectious complications.

14.
Eur J Microbiol Immunol (Bp) ; 14(2): 116-125, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38526560

RESUMEN

In recent years, the incidence of food-borne bacterial enteric diseases has increased worldwide causing significant health care and socioeconomic burdens. According to the World Health Organization, there are an estimated 600 million cases of foodborne illnesses worldwide each year, resulting in 420,000 deaths. Despite intensive efforts to tackle this problem, foodborne pathogenic microorganisms continue to be spread further. Therefore, there is an urgent need to find novel anti-microbial non-toxic compounds for food preservation. One way to tackle this issue may be the usage of polyphenols, which have received increasing attention in the recent years given their pleotropic health-promoting properties. This prompted us to perform a literature search summarizing studies from the past 10 years regarding the potential anti-microbial and disease-alleviating effects of plant-derived phenolic compounds against foodborne bacterial pathogens. The included 16 studies provide evidence that polyphenols show pronounced anti-bacterial and anti-oxidant effects against both Gram-positive and Gram-negative bacterial species. In addition, synergistic anti-microbial effects in combination with synthetic antibiotics were observed. In conclusion, phenolic compounds may be useful as natural anti-microbial agents in the food, agricultural, and pharmaceutical industries in the combat of foodborne infections.

15.
Artículo en Inglés | MEDLINE | ID: mdl-38801662

RESUMEN

Serious risks to human health are posed by acute campylobacteriosis, an enteritis syndrome caused by oral infection with the food-borne bacterial enteropathogen Campylobacter jejuni. Since the risk for developing post-infectious autoimmune complications is intertwined with the severity of enteritis, the search of disease-mitigating compounds is highly demanded. Given that benzoic acid is an organic acid with well-studied health-promoting including anti-inflammatory effects we tested in our present study whether the compound might be a therapeutic option to alleviate acute murine campylobacteriosis. Therefore, microbiota-depleted IL-10-/- mice were perorally infected with C. jejuni and received benzoic acid through the drinking water from day 2 until day 6 post-infection. The results revealed that benzoic acid treatment did not affect C. jejuni colonization in the gastrointestinal tract, but alleviated clinical signs of acute campylobacteriosis, particularly diarrheal and wasting symptoms. In addition, benzoic acid mitigated apoptotic cell responses in the colonic epithelia and led to reduced pro-inflammatory immune reactions in intestinal, extra-intestinal, and systemic compartments tested on day 6 post-infection. Hence, our preclinical placebo-controlled intervention trial revealed that benzoic acid constitutes a promising therapeutic option for treating acute campylobacteriosis in an antibiotic-independent fashion and in consequence, also for reducing the risk of post-infectious autoimmune diseases.

16.
Biomolecules ; 14(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38397378

RESUMEN

The incidence of human Campylobacter jejuni infections is increasing worldwide. It is highly desirable to prevent campylobacteriosis in individuals at risk for severe disease with antibiotics-independent non-toxic compounds. Activated charcoal (AC) has long been used as an anti-diarrheal remedy. Here, we tested the disease-mitigating effects of oral AC versus placebo in human gut microbiota-associated (hma) IL-10-/- mice starting a week prior to C. jejuni infection. On day 6 post-infection, the gastrointestinal C. jejuni loads were comparable in both infected cohorts, whereas campylobacteriosis symptoms such as wasting and bloody diarrhea were mitigated upon AC prophylaxis. Furthermore, AC application resulted in less pronounced C. jejuni-induced colonic epithelial cell apoptosis and in dampened innate and adaptive immune cell responses in the colon that were accompanied by basal concentrations of pro-inflammatory mediators including IL-6, TNF-α, IFN-γ, and nitric oxide measured in colonic explants from AC treated mice on day 6 post-infection. Furthermore, C. jejuni infection resulted in distinct fecal microbiota shift towards higher enterobacterial numbers and lower loads of obligate anaerobic species in hma mice that were AC-independent. In conclusion, our pre-clinical placebo-controlled intervention study provides evidence that prophylactic oral AC application mitigates acute murine campylobacteriosis.


Asunto(s)
Infecciones por Campylobacter , Carbón Orgánico , Microbioma Gastrointestinal , Animales , Humanos , Ratones , Infecciones por Campylobacter/prevención & control , Infecciones por Campylobacter/tratamiento farmacológico , Carbón Orgánico/administración & dosificación , Interleucina-10/genética , Ratones Endogámicos C57BL , Administración Oral , Modelos Animales de Enfermedad
17.
Front Microbiol ; 15: 1290490, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38343716

RESUMEN

Food-borne Campylobacter jejuni infections constitute serious threats to human health worldwide. Since antibiotic treatment is usually not indicated in infected immune-competent patients, antibiotic-independent treatment approaches are needed to tackle campylobacteriosis. To address this, we orally applied carvacrol, deferoxamine, deoxycholate, and 2-fucosyl-lactose either alone or all in combination to human microbiota-associated IL-10-/- mice from day 2 until day 6 following oral C. jejuni infection. Neither treatment regimen affected C. jejuni loads in the colon, whereas carvacrol lowered the pathogen numbers in the ileum on day 6 post-infection (p.i.). The carvacrol and combination treatment regimens resulted in alleviated diarrheal symptoms, less distinct histopathological and apoptotic epithelial cell responses in the colon, as well as diminished numbers of colonic neutrophils and T lymphocytes on day 6 p.i., whereas the latter cells were also decreased upon deferoxamine, deoxycholate, or 2-fucosyl-lactose application. Remarkably, the carvacrol, deferoxamine, and combination treatment regimens dampened ex-vivo IFN-γ secretion in the colon, the kidneys, and even in the serum to basal concentrations on day 6 p.i. In conclusion, carvacrol alone and its combination with deferoxamine, deoxycholate, and 2-fucosyl-lactose constitute promising antibiotics-independent treatment options to fight acute campylobacteriosis.

18.
Biomolecules ; 14(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38540710

RESUMEN

Human Campylobacter jejuni infections are of worldwide importance and represent the most commonly reported bacterial enteritis cases in middle- and high-income countries. Since antibiotics are usually not indicated and the severity of campylobacteriosis is directly linked to the risk of developing post-infectious complications, non-toxic antibiotic-independent treatment approaches are highly desirable. Given its health-promoting properties, including anti-microbial and anti-inflammatory activities, we tested the disease-alleviating effects of oral menthol in murine campylobacteriosis. Therefore, human gut microbiota-associated IL-10-/- mice were orally subjected to synthetic menthol starting a week before C. jejuni infection and followed up until day 6 post-infection. Whereas menthol pretreatment did not improve campylobacteriosis symptoms, it resulted in reduced colonic C. jejuni numbers and alleviated both macroscopic and microscopic aspects of C. jejuni infection in pretreated mice vs. controls. Menthol pretreatment dampened the recruitment of macrophages, monocytes, and T lymphocytes to colonic sites of infection, which was accompanied by mitigated intestinal nitric oxide secretion. Furthermore, menthol pretreatment had only marginal effects on the human fecal gut microbiota composition during the C. jejuni infection. In conclusion, the results of this preclinical placebo-controlled intervention study provide evidence that menthol application constitutes a promising way to tackle acute campylobacteriosis, thereby reducing the risk for post-infectious complications.


Asunto(s)
Infecciones por Campylobacter , Campylobacter jejuni , Enterocolitis , Microbioma Gastrointestinal , Humanos , Ratones , Animales , Interleucina-10/genética , Mentol/farmacología , Mentol/uso terapéutico , Infecciones por Campylobacter/complicaciones , Infecciones por Campylobacter/tratamiento farmacológico , Infecciones por Campylobacter/microbiología , Ratones Endogámicos C57BL , Enterocolitis/tratamiento farmacológico , Enterocolitis/microbiología
19.
Front Immunol ; 15: 1363457, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855111

RESUMEN

Introduction: Human infections with the food-borne enteropathogen Campylobacter jejuni are responsible for increasing incidences of acute campylobacteriosis cases worldwide. Since antibiotic treatment is usually not indicated and the severity of the enteritis directly correlates with the risk of developing serious autoimmune disease later-on, novel antibiotics-independent intervention strategies with non-toxic compounds to ameliorate and even prevent campylobacteriosis are utmost wanted. Given its known pleiotropic health-promoting properties, curcumin constitutes such a promising candidate molecule. In our actual preclinical placebo-controlled intervention trial, we tested the anti-microbial and anti-inflammatory effects of oral curcumin pretreatment during acute experimental campylobacteriosis. Methods: Therefore, secondary abiotic IL-10-/- mice were challenged with synthetic curcumin via the drinking water starting a week prior oral C. jejuni infection. To assess anti-pathogenic, clinical, immune-modulatory, and functional effects of curcumin prophylaxis, gastrointestinal C. jejuni bacteria were cultured, clinical signs and colonic histopathological changes quantitated, pro-inflammatory immune cell responses determined by in situ immunohistochemistry and intestinal, extra-intestinal and systemic pro-inflammatory mediator measurements, and finally, intestinal epithelial barrier function tested by electrophysiological resistance analysis of colonic ex vivo biopsies in the Ussing chamber. Results and discussion: Whereas placebo counterparts were suffering from severe enterocolitis characterized by wasting symptoms and bloody diarrhea on day 6 post-infection, curcumin pretreated mice, however, were clinically far less compromised and displayed less severe microscopic inflammatory sequelae such as histopathological changes and epithelial cell apoptosis in the colon. In addition, curcumin pretreatment could mitigate pro-inflammatory innate and adaptive immune responses in the intestinal tract and importantly, rescue colonic epithelial barrier integrity upon C. jejuni infection. Remarkably, the disease-mitigating effects of exogenous curcumin was also observed in organs beyond the infected intestines and strikingly, even systemically given basal hepatic, renal, and serum concentrations of pro-inflammatory mediators measured in curcumin pretreated mice on day 6 post-infection. In conclusion, the anti-Campylobacter and disease-mitigating including anti-inflammatory effects upon oral curcumin application observed here highlight the polyphenolic compound as a promising antibiotics-independent option for the prevention from severe acute campylobacteriosis and its potential post-infectious complications.


Asunto(s)
Infecciones por Campylobacter , Campylobacter jejuni , Curcumina , Animales , Curcumina/administración & dosificación , Curcumina/farmacología , Infecciones por Campylobacter/tratamiento farmacológico , Infecciones por Campylobacter/inmunología , Ratones , Campylobacter jejuni/efectos de los fármacos , Administración Oral , Ratones Noqueados , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Interleucina-10/metabolismo , Enfermedad Aguda , Antibacterianos/administración & dosificación
20.
Curr Biol ; 34(9): 1967-1976.e6, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38626763

RESUMEN

In flowering plants, outcrossing is commonly ensured by self-incompatibility (SI) systems. These can be homomorphic (typically with many different allelic specificities) or can accompany flower heteromorphism (mostly with just two specificities and corresponding floral types). The SI system of the Oleaceae family is unusual, with the long-term maintenance of only two specificities but often without flower morphology differences. To elucidate the genomic architecture and molecular basis of this SI system, we obtained chromosome-scale genome assemblies of Phillyrea angustifolia individuals and related them to a genetic map. The S-locus region proved to have a segregating 543-kb indel unique to one specificity, suggesting a hemizygous region, as observed in all distylous systems so far studied at the genomic level. Only one of the predicted genes in this indel region is found in the olive tree, Olea europaea, genome, also within a segregating indel. We describe complete association between the presence/absence of this gene and the SI types determined for individuals of seven distantly related Oleaceae species. This gene is predicted to be involved in catabolism of the gibberellic acid (GA) hormone, and experimental manipulation of GA levels in developing buds modified the male and female SI responses of the two specificities in different ways. Our results provide a unique example of a homomorphic SI system, where a single conserved gibberellin-related gene in a hemizygous indel underlies the long-term maintenance of two groups of reproductive compatibility.


Asunto(s)
Giberelinas , Giberelinas/metabolismo , Oleaceae/genética , Oleaceae/metabolismo , Oleaceae/crecimiento & desarrollo , Autoincompatibilidad en las Plantas con Flores/genética , Genoma de Planta , Flores/genética , Flores/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA