Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36835167

RESUMEN

N-arylcyanothioformamides are useful coupling components for building key chemical intermediates and biologically active molecules in an expedited and efficient manner. Similarly, substituted (Z)-2-oxo-N-phenylpropanehydrazonoyl chlorides have been utilized in numerous one-step heteroannulation reactions to assemble the structural core of several different types of heterocyclic compounds. Herein, we demonstrate the effectiveness of the reaction of N-arylcyanothioformamides with various substituted (Z)-2-oxo-N-phenylpropanehydrazonoyl chlorides to produce, stereoselectively and regioselectively, a range of 5-arylimino-1,3,4-thiadiazole derivatives decorated with a multitude of functional groups on both aromatic rings. The synthetic methodology features mild room-temperature conditions, large substrate scope, wide array of functional groups on both reactants, and good to high reaction yields. The products were isolated by gravity filtration in all cases and structures were confirmed by multinuclear NMR spectroscopy and high accuracy mass spectral analysis. Proof of molecular structure of the isolated 5-arylimino-1,3,4-thiadiazole regioisomer was obtained for the first time by single-crystal X-ray diffraction analysis. Crystal-structure determination was carried out on (Z)-1-(5-((3-fluorophenyl)imino)-4-(4-iodophenyl)-4,5-dihydro-1,3,4-thiadiazol-2-yl)ethan-1-one and (Z)-1-(4-phenyl-5-(p-tolylimino)-4,5-dihydro-1,3,4-thiadiazol-2-yl)ethan-1-one. Similarly, the tautomeric structures of the N-arylcyanothioformamides and (Z)-geometries of the 2-oxo-N-phenylpropanehydrazonoyl chloride coupling partners were proven by X-ray diffraction studies. As representative examples, crystal-structure determination was carried out on (4-ethoxyphenyl)carbamothioyl cyanide and (Z)-N-(2,3-difluorophenyl)-2-oxopropanehydrazonoyl chloride. Density functional theory calculations at the B3LYP-D4/def2-TZVP level were carried out to rationalize the observed experimental findings.


Asunto(s)
Compuestos Heterocíclicos , Tiadiazoles , Rayos X , Tiadiazoles/química , Cloruros , Estructura Molecular , Compuestos Heterocíclicos/química
2.
Int J Mol Sci ; 24(5)2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36902433

RESUMEN

Norovirus (HNoV) is a leading cause of gastroenteritis globally, and there are currently no treatment options or vaccines available to combat it. RNA-dependent RNA polymerase (RdRp), one of the viral proteins that direct viral replication, is a feasible target for therapeutic development. Despite the discovery of a small number of HNoV RdRp inhibitors, the majority of them have been found to possess a little effect on viral replication, owing to low cell penetrability and drug-likeness. Therefore, antiviral agents that target RdRp are in high demand. For this purpose, we used in silico screening of a library of 473 natural compounds targeting the RdRp active site. The top two compounds, ZINC66112069 and ZINC69481850, were chosen based on their binding energy (BE), physicochemical and drug-likeness properties, and molecular interactions. ZINC66112069 and ZINC69481850 interacted with key residues of RdRp with BEs of -9.7, and -9.4 kcal/mol, respectively, while the positive control had a BE of -9.0 kcal/mol with RdRp. In addition, hits interacted with key residues of RdRp and shared several residues with the PPNDS, the positive control. Furthermore, the docked complexes showed good stability during the molecular dynamic simulation of 100 ns. ZINC66112069 and ZINC69481850 could be proven as potential inhibitors of the HNoV RdRp in future antiviral medication development investigations.


Asunto(s)
Gastroenteritis , Norovirus , Humanos , Simulación de Dinámica Molecular , Unión Proteica , ARN Polimerasa Dependiente del ARN/metabolismo , Antivirales/farmacología , Simulación del Acoplamiento Molecular
3.
Molecules ; 28(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36770934

RESUMEN

A simple and concise three-component synthesis of a key pyrrole framework was developed from the reaction between α-hydroxyketones, oxoacetonitriles, and anilines. The synthesis was used to obtain several pyrrole-based drug candidates, including COX-2 selective NSAID, antituberculosis lead candidates BM212, BM521, and BM533, as well as several analogues. This route has potential to obtain diverse libraries of these pyrrole candidates in a concise manner to develop optimum lead compounds.


Asunto(s)
Compuestos de Anilina , Pirroles , Pirroles/farmacología
4.
Molecules ; 27(16)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36014523

RESUMEN

A one-step, three-component reaction between α-hydroxyketones, oxoacetonitriles, and primary amines gives N-substituted 2,3,5-functionalized 3-cyanopyrroles with complete selectivity in up to 90% isolated yields. The reaction worked on a wide substrate scope under mild reaction conditions (AcOH as a catalyst, EtOH, 70 °C, 3 h). The reaction proceeded with very high atom efficiency as water is the only molecule lost during the reaction. The practicality of the reaction was demonstrated on a large gram scale. The structures of the 3-cyanopyrroles were confirmed by single-crystal X-ray diffraction and NMR; this work provides a general and practical entry to pyrrole scaffolds suitably decorated for the synthesis of various bioactive pyrroles in a concise manner.


Asunto(s)
Aminas , Pirroles , Aminas/química , Catálisis , Cristalografía por Rayos X , Cetonas , Pirroles/química
5.
Molecules ; 27(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36144766

RESUMEN

Prodigiosin is a secondary metabolite produced in several species of bacteria. It exhibits antimicrobial and anticancer properties. Methods for the extraction and identification of prodigiosin and their related derivatives from bacterial cultures typically depend on solvent-based extractions followed by NMR spectroscopy. The estuarine bacterium, V. gazogenes PB1, was previously shown to produce prodigiosin. This conclusion, however, was based on analytical data obtained from ultraviolet-visible absorption spectrophotometry and infrared spectroscopy. Complete dependence on these techniques would be considered inadequate for the accurate identification of the various members of the prodiginine family of compounds, which possess very similar chemical structures and near-identical optical properties. In this study, we extracted prodigiosin from a culture of Vibrio gazogenes PB1 cultivated in minimal media, and for the first time, confirmed the synthesis of prodigiosin Vibrio gazogenes PB1 using NMR techniques. The chemical structure was validated by 1H and 13C NMR spectroscopy, and further corroborated by 2D NMR, which included 1H-1H-gDQFCOSY, 1H-13C-gHSQC, and 1H-13C-gHMBC, as well as 1H-1H-homonuclear decoupling experiments. Based on this data, previous NMR spectral assignments of prodigiosin are reaffirmed and in some cases, corrected. The findings will be particularly relevant for experimental work relating to the use of V. gazogenes PB1 as a host for the synthesis of prodigiosin.


Asunto(s)
Prodigiosina , Vibrio , Antibacterianos/metabolismo , Espectroscopía de Resonancia Magnética , Prodigiosina/metabolismo , Prodigiosina/farmacología , Solventes
6.
J Org Chem ; 85(14): 9129-9138, 2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32567855

RESUMEN

A simple trimethylsilyl trifluoromethanesulfonate (TMSOTf)-promoted intermolecular cascade reaction of aromatic diazo ketones with olefins has been developed. This method directly gave 3-phenylethylideneoxindoles from 3-diazooxindoles and styrenes with exclusive regioselectivity, chemoselectivity, and E-stereoselectivity. The key to the success of the reaction and higher yields is the elegant use of TMSOTf, which gradually released the active triflic acid promoter in situ. The reaction tolerates a wide substrate scope of 3-diazooxindoles and styrenes with electron-donating and electron-withdrawing groups and works well on the gram scale.

7.
Molecules ; 25(16)2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32823809

RESUMEN

Cis- or Z-configuration is required for the plant growth-promoting activity of cinnamic acid (CA), whereas the E-form is inactive. Herein, we describe the encapsulation of E-CA by cucurbit[7]uril (CB7) and show that photoisomerization reactions can be more efficiently controlled in aqueous solutions by utilizing this supramolecular approach. Measurements of UV-visible absorption and proton NMR spectra at different pH values confirm that E-CA and its methyl ester, methyl-E-cinnamate (MC), form stronger 1:1 host-guest complexes with CB7 compared to cucurbit[8]uril (CB8) or three cyclodextrins (α-, ß-, and γ-CD). Irradiation of (300 nm) UV light to an aqueous solution of the CB7-bound E isomers induces E to Z photoisomerization and the dissociation of the complex. When the same solution is irradiated by (254 nm) UV light, Z to E conformational changes of the unbound Z isomers are observed and are accompanied by restoring the host-guest complex formation.


Asunto(s)
Hidrocarburos Aromáticos con Puentes/química , Cinamatos/química , Imidazoles/química , Procesos Fotoquímicos , Concentración de Iones de Hidrógeno , Modelos Moleculares , Estructura Molecular
8.
Molecules ; 25(3)2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-32012737

RESUMEN

Novel flavanones that incorporate chromene motifs are synthesized via a one-step multicomponent reaction. The structures of the new chromenes are elucidated by using IR, 1H-NMR, 13C-NMR, 1H-1H COSY, HSQC, HMBC, and elemental analysis. The new compounds are screened for their in vitro antimicrobial and cytotoxic activities. The antimicrobial properties are investigated and established against seven human pathogens, employing the agar well diffusion method and the minimum inhibitory concentrations. A majority of the assessed derivatives are found to exhibit significant antimicrobial activities against most bacterial strains, in comparison to standard reference drugs. Moreover, their cytotoxicity is appraised against four different human carcinoma cell lines: human colon carcinoma (HCT-116), human hepatocellular carcinoma (HepG-2), human breast adenocarcinoma (MCF-7), and adenocarcinoma human alveolar basal epithelial cell (A-549). All the desired compounds are subjected to in-silico studies, forecasting their drug likeness, bioactivity, and the absorption, distribution, metabolism, and excretion (ADME) properties prior to their synthetic assembly. The in-silico molecular docking evaluation of all the targeted derivatives is undertaken on gyrase B and the cyclin-dependent kinase. The in-silico predicted outcomes were endorsed by the in vitro studies.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Benzopiranos/química , Flavanonas/química , Flavanonas/farmacología , Neoplasias/tratamiento farmacológico , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
9.
Bioorg Chem ; 87: 679-687, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30953887

RESUMEN

A series of 5-imino-4-thioxo-2-imidazolidinone derivatives with different substituents at N1 and N3 was synthesized with high yield and excellent purity by the reaction of different N-arylcyanothioformamide derivatives with isocyanate derivatives. Treatment 5-imino-4-thioxo-2-imidazolidinone derivatives with acidic medium afforded 4-thioxoimidazolidin-2,5-dione derivatives. The structures of the obtained products were established based on spectroscopic IR, 1H NMR, 13C NMR, 1H, 1H-COSY, HSQC and elemental analyses. The anti-inflammatory activity of the synthesized compounds through the carrageenan-paw edema model as well as in vitro COX-1 and COX-2 inhibition assay were evaluated where most of the synthesized compounds showed significant anti-inflammatory activity. Mostly, all of our synthesized compounds have greater activity more than celecoxib toward both cyclooxygenase enzymes. All of the tested compounds (except one compound) exhibited IC50 valves for COX-2 ranged from 0.001 × 10-3 to 0.827 × 10-3 µM while the reference drug has IC50 40.0 × 10-3 µM. Furthermore, the analgesic activity of such compounds was also determined. Molecular modeling study was also conducted to rationalize the potential as anti-inflammatory agents of our synthesized compounds by predicting their binding modes, binding affinities and optimal orientation at the active site of the COX enzymes.


Asunto(s)
Analgésicos/farmacología , Antiinflamatorios no Esteroideos/farmacología , Inhibidores de la Ciclooxigenasa 2/farmacología , Edema/tratamiento farmacológico , Imidazolidinas/farmacología , Prostaglandina-Endoperóxido Sintasas/metabolismo , Analgésicos/síntesis química , Analgésicos/química , Animales , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Carragenina , Inhibidores de la Ciclooxigenasa 2/síntesis química , Inhibidores de la Ciclooxigenasa 2/química , Relación Dosis-Respuesta a Droga , Edema/inducido químicamente , Imidazolidinas/síntesis química , Imidazolidinas/química , Ratones , Modelos Moleculares , Estructura Molecular , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
10.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 5): o539, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24860348

RESUMEN

The title compound, C23H24O3, was obtained in a one-step (60% yield) synthesis from 1,1,1-tris(hydroxymethyl)ethane. It features a tripodal ligand capable of complexing metal centres. One of the three conformations involving the methyl group, the central C-C bond and the phenoxy substituents is antiperiplanar while the two others are synclinal [the corresponding C-C-C-O torsion angles are -174.6 (1), -53.2 (2) and -47.3 (2)°]. In the crystal, C-H⋯O inter-actions link the molecules into [010] chains.

11.
RSC Adv ; 14(6): 3972-3984, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38288152

RESUMEN

Imidazopyridazines are fused heterocycles, like purines, with a pyridazine ring replacing the pyrimidine ring in purines. Imidazopyridazines have been primarily studied for their kinase inhibition activity in the development of new anticancer and antimalarial agents. In addition to this, they have also been investigated for their anticonvulsant, antiallergic, antihistamine, antiviral, and antitubercular properties. Herein, we review the background and development of different imidazopyridazines as potential pharmacological agents. Moreover, the scope of this relatively less charted heterocyclic scaffold is also highlighted.

12.
ACS Omega ; 9(22): 23802-23821, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38854577

RESUMEN

An unprecedented and efficient three-component 1,3-dipolar cycloaddition reaction using (E)-2-(benzo[d]thiazol-2-yl)-3-(aryl)acrylonitriles 4a-g and an in situ generated azomethine ylide 3 from isatin and N-methylglycine is described. The reaction exhibits exclusive regioselectivity, resulting in the formation of 3'-(benzo[d]thiazol-2-yl)-1'-methyl-2-oxo-4'-(aryl)spiro[indoline-3,2'-pyrrolidine]-3'-carbonitriles regioisomers through exo/endo approaches. The diastereoselectivity of the reaction is highly dependent on the substitution pattern of the phenyl ring in dipolarophiles 4a-g, leading to the formation of exo-/endo-cycloadducts in varying ratios. To understand the stereoselectivity, the transition state structures were optimized using the TS guess geometry with the QST3-based method. The reaction mechanism and regioselectivity were elucidated by evaluating global and local electrophilicity and nucleophilicity descriptors at the B3LYP/cc-pVTZ level of theory, along with considerations based on the HSAB principle. The analysis of global electron density transfer (GEDT) showed that the reactions are polar and electron density fluxes from azomethine ylide 3 toward dipolarophile 4a-g. It was found from the molecular electrostatic potential map (MESP) that at the more favorable transition state, approach of reactants locates the oppositely charged regions over each other resulting in attractive forces between the two fragments. The computational results are consistent with the experimental observations, confirming that the reactions proceed through an asynchronous one-step mechanism.

13.
Arch Pharm (Weinheim) ; 346(7): 542-55, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23836516

RESUMEN

A series of 15 novel symmetrical and non-symmetrical bis-imidazolidineiminothiones (6a-g, 7a-e, 8a,b, and 9) with various substituents at N-(1) (p-tolyl, p-methoxyphenyl, p-ethoxyphenyl, p-chlorophenyl, p-bromophenyl, p-iodophenyl, and 3,5-dichlorophenyl) and different linkers between the N-(3) atoms [4,4'-oxybis(4,1-phenylene), 2,2'-dimethoxybiphenyl, and (1,3,3-trimethylcyclohexyl)methyl)] were prepared in 65-75% yields from substituted N-arylcyanothioformanilides and various bis-isocyanates. Screening for cytotoxicity against the HEPG2, HEP2, MCF7, and HCT116 tumor cell lines gave IC50 values ranging from 6.3 to 84.6 µM, where compounds 6b,d,e,g and 7a were markedly active against a least one cell line, underlining the matching effect of properly positioned substituents on N-(1) and the appropriate N-(3)-N-(3) linker. Likewise, all heterocyles were tested against microbial organisms (Pseudomonas aeruginosa, Sarcina lutea, Bacillus pumilus, and Micrococcus luteus) and fungal strains (Candida albicans and Penicilium chrysogenum). Most compounds showed significant antibacterial and antifungal activities, reaching in certain cases the same level of antimicrobial activity as the standard antibacterial agent erythromycin and the antifungal agent metronidazole. The antimicrobial activity was further supported by quantitative assessment of susceptibilities of a selection of the preceding microorganisms using minimum inhibitory concentration and minimum bactericidal concentration techniques. Finally, the antiviral properties of all compounds were investigated against the viral strains HAV, HSV1, and CoxB4, where 6c,d,f and 7a,c,e were markedly active against one or two viral strains, reducing the virus plaque count of various viral strains by 66 to 88%. Structure activity relationship studies revealed several matching pairs of aromatic substituents on N-(1) and the N-(3)-N-(3) linkers, which could serve to optimize structural features for high activity to eventually render such compounds clinically useful drug agents.


Asunto(s)
Antiinfecciosos/síntesis química , Antiinfecciosos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Imidazolidinas/síntesis química , Imidazolidinas/farmacología , Antibacterianos/síntesis química , Antibacterianos/farmacología , Antifúngicos/síntesis química , Antifúngicos/farmacología , Antivirales/síntesis química , Antivirales/farmacología , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células HCT116 , Células Hep G2 , Humanos , Concentración 50 Inhibidora , Células MCF-7 , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad
14.
RSC Adv ; 13(5): 3210-3233, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36756398

RESUMEN

Infections caused by bacteria are a significant issue on a global scale, and imperative action is required to discover novel or improved therapeutic agents. Flavonoids are a class of plant-derived compounds that have a variety of potentially useful bioactivities. These activities include immediate antimicrobial properties, synergistic effect with antimicrobials, ferocious repression of pathogenicity, anti-urease activity etc. This review summarizes current studies concerning anti-urease actions of flavonoids as well as structural-activity correlation investigations of the flavonoid core structure. It is possible that if researchers investigate the many structural changes that may be made in flavonoid rings, they'll be able to build up novel compounds that have powerful and effective anti-urease properties.

15.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36986433

RESUMEN

Indole-tethered chromene derivatives were synthesised in a one-pot multicomponent reaction using N-alkyl-1H-indole-3-carbaldehydes, 5,5-dimethylcyclohexane-1,3-dione, and malononitrile, catalysed by DBU at 60-65 °C in a short reaction time. The benefits of the methodology include non-toxicity, an uncomplicated set-up procedure, a faster reaction time, and high yields. Moreover, the anticancer properties of the synthesised compounds were tested against selected cancer cell lines. The derivatives 4c and 4d displayed very good cytotoxic activity, with IC50 values ranging from 7.9 to 9.1 µM. Molecular docking revealed the potent derivatives have good binding affinity towards tubulin protein, better than the control, and the molecular dynamic simulations further demonstrated the stability of ligand-receptor interactions. Moreover, the derivatives followed all the drug-likeness filters.

16.
Chem Asian J ; 18(17): e202300475, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37495559

RESUMEN

Isoselenocyanates are valuable coupling partners required for preparing key chemical intermediates and biologically active molecules in an accelerated and effective way. Likewise, (Z)-2-oxo-N-phenylpropanehydrazonoyl chlorides have been employed in numerous one-step heteroannulation reactions to assemble the structural core of several various kinds of heterocyclic compounds. Here, we describe the inverse electron demand 1,3-dipolar cycloaddition reaction of isoselenocyanates with a variety of substituted (Z)-2-oxo-N-phenylpropanehydrazonoyl chlorides to generate, regioselectively and stereoselectively, a series of 5-arylimino-1,3,4-selenadiazole derivatives comprising a multitude of functional groups on both aryl rings. The synthetic method features gentle room-temperature conditions, wide substrate scope, and good to high reaction yields. The selenadiazoles were separated by gravity filtration in all instances and chemical structures were validated by multinuclear NMR spectroscopy and high accuracy mass spectral measurements. First conclusive molecular structure elucidation of the observed 5-arylimino-selenadiazole regioisomer was verified by single-crystal X-ray diffraction analysis. Crystal-structure measurement was successfully carried out on (Z)-1-(4-(4-iodophenyl)-5-(p-tolylimino)-4,5-dihydro-1,3,4-selenadiazol-2-yl)ethan-1-one and (Z)-1-(5-((4-methoxyphenyl)imino)-4-(4-(methylthio)phenyl)-4,5-dihydro-1,3,4-selenadiazol-2-yl)ethan-1-one. Likewise, the (Z)-geometry of the hydrazonoyl chloride reactant was proven by X-ray diffraction studies. As representative examples, crystal-structure determination was carried out on (Z)-2-oxo-N-phenylpropanehydrazonoyl chloride and (Z)-N-(3,5-bis(trifluoromethyl)phenyl)-2-oxopropanehydrazonoyl chloride. Density functional theory calculations at the B3LYP-D4/def2-TZVP level were conducted to support the noted experimental findings and suggested mechanism.

17.
ACS Omega ; 8(19): 17195-17208, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37214694

RESUMEN

Benzothiazepines are pharmacologically active compounds, frequently utilized as a precursor for acquiring versatile molecules with several bioactivities including anti-inflammatory, anti-human immunodeficiency virus (anti-HIV), analgesic, antitumor, antimicrobial, and antitubercular. In this study, the 2,4-diphenyl-2,3-dihydro-1,5-benzothiazepine scaffold was selected for their in vitro, docking, and druglikeness studies to evaluate their inhibitory potential against mushroom tyrosinase. All synthesized analogues, 1-14, exhibited moderate to good IC50 values ranging from 1.21 to 70.65 µM. The synthesized benzothiazepine derivatives were potent tyrosinase inhibitors, which outperformed the reference kojic acid (IC50 = 16.69 µM). The kinetic analysis revealed that compound 2 (2-(3,4-dimethoxyphenyl)-4-(p-tolyl)-2,3-dihydrobenzo[b][1,4]thiazepine) was a mixed-type tyrosinase inhibitor with a Ki value of 1.01 µM. Molecular modeling studies against tyrosinase protein (PDB ID: 2Y9X) were conducted to recognize the binding modes of these analogues. The utilization of molecular dynamic (MD) simulations enabled the assessment of the protein-ligand complex's dynamic behavior, stability, and binding affinity for the compounds. These simulations ultimately led to the identification of compound 2 as a potential inhibitor of tyrosinase. Additionally, a druglikeness study was conducted, which supported the promising potential of the new analogues as novel antityrosinase agents. The in silico studies were consistent with the in vitro results, showing that these ligands had good binding scores against tyrosinase and interacted with the core residues of the target protein. Gaussian 09 was used for the geometry optimization of all complexes.

18.
Sci Rep ; 13(1): 2370, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759533

RESUMEN

The study was aimed to evaluate the performance of a newly developed spectroscopy-based non-invasive and noncontact device (SAMIRA) for the simultaneous measurement of hemoglobin, bilirubin and oxygen saturation as an alternative to the invasive biochemical method of blood sampling. The accuracy of the device was assessed in 4318 neonates having incidences of either anemia, jaundice, or hypoxia. Transcutaneous bilirubin, hemoglobin and blood saturation values were obtained by the newly developed instrument which was corroborated with the biochemical blood tests by expert clinicians. The instrument is trained using Artificial Neural Network Analysis to increase the acceptability of the data. The artificial intelligence incorporated within the instrument determines the disease condition of the neonate. The Pearson's correlation coefficient, r was found to be 0.987 for hemoglobin estimation and 0.988 for bilirubin and blood gas saturation respectively. The bias and the limits of agreement for the measurement of all the three parameters were within the clinically acceptance limit.


Asunto(s)
Bilirrubina , Hemoglobinas , Saturación de Oxígeno , Oxígeno , Sistemas de Atención de Punto , Análisis Espectral , Humanos , Recién Nacido , Inteligencia Artificial , Bilirrubina/sangre , Hemoglobinas/análisis , Oxígeno/sangre , Análisis Espectral/instrumentación , Análisis Espectral/métodos , Imagen Óptica/instrumentación , Imagen Óptica/métodos
19.
Commun Biol ; 6(1): 647, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328528

RESUMEN

Recent findings suggest a key role for reactive oxygen species (ROS) in the pathogenesis and progression of ulcerative colitis (UC). Several studies have also highlighted the efficacy of citrate functionalized Mn3O4 nanoparticles as redox medicine against a number of ROS-mediated disorders. Here we show that synthesized nanoparticles consisting of chitosan functionalized tri-manganese tetroxide (Mn3O4) can restore redox balance in a mouse model of UC induced by dextran sulfate sodium (DSS). Our in-vitro characterization of the developed nanoparticle confirms critical electronic transitions in the nanoparticle to be important for the redox buffering activity in the animal model. A careful administration of the developed nanoparticle not only reduces inflammatory markers in the animals, but also reduces the mortality rate from the induced disease. This study provides a proof of concept for the use of nanomaterial with synergistic anti-inflammatory and redox buffering capacity to prevent and treat ulcerative colitis.


Asunto(s)
Quitosano , Colitis Ulcerosa , Nanopartículas , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Quitosano/efectos adversos , Especies Reactivas de Oxígeno , Oxidación-Reducción
20.
Sci Rep ; 13(1): 17306, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828100

RESUMEN

The recent prediction of diabetes to be a global pandemic invites a detection strategy preferably non-invasive, and bloodless to manage the disease and the associated complications. Here, we have synthesized chitosan polymer functionalized, organic-inorganic bio-compatible nano-hybrids of Mn3O4 nanoparticles, and characterized it by utilizing several optical methodologies for the structural characterization which shows the Michaelis Menten (MM) kinetics for glucose and alpha-amylase protein (well-known diabetes biomarkers). We have also studied the potentiality for the detection of alpha-amylase in human salivary secretion which is reported to be strongly correlated with uncontrolled hyperglycemia. Finally, we have developed a prototype for the measurement of glucose (LOD of 0.38 mg/dL, LOQ of 1.15 mg/dL) and HbA1c (LOD of 0.15% and LOQ of 0.45%) utilizing the basic knowledge in the study for the detection of uncontrolled hyperglycemia at the point-of-care. With the limited number of clinical trials, we have explored the potential of our work in combating the diabetic pandemic across the globe in near future.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Humanos , Saliva/metabolismo , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/metabolismo , Glucosa/metabolismo , Hiperglucemia/diagnóstico , Hiperglucemia/metabolismo , Análisis Espectral , alfa-Amilasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA