Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Cell ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39025071

RESUMEN

RAS proteins are conserved guanosine triphosphate (GTP) hydrolases (GTPases) that act as molecular binary switches and play vital roles in numerous cellular processes. Upon GTP binding, RAS GTPases adopt an active conformation and interact with specific proteins termed RAS effectors that contain a conserved ubiquitin-like domain, thereby facilitating downstream signaling. Over 50 effector proteins have been identified in the human proteome, and many have been studied as potential mediators of RAS-dependent signaling pathways. Biochemical and structural analyses have provided mechanistic insights into these effectors, and studies using model organisms have complemented our understanding of their role in physiology and disease. Yet, many critical aspects regarding the dynamics and biological function of RAS-effector complexes remain to be elucidated. In this review, we discuss the mechanisms and functions of known RAS effector proteins, provide structural perspectives on RAS-effector interactions, evaluate their significance in RAS-mediated signaling, and explore their potential as therapeutic targets.

2.
J Immunol ; 211(5): 844-852, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37477665

RESUMEN

The lung is a barrier tissue with constant exposure to the inhaled environment. Therefore, innate immunity against particulates and pathogens is of critical importance to maintain tissue homeostasis. Although the lung harbors both myelinating and nonmyelinating Schwann cells (NMSCs), NMSCs represent the most abundant Schwann cell (SC) population in the lung. However, their contribution to lung physiology remains largely unknown. In this study, we used the human glial fibrillary acidic protein promoter driving tdTomato expression in mice to identify SCs in the peripheral nervous system and determine their location within the lung. Single-cell transcriptomic analysis revealed the existence of two NMSC populations (NMSC1 and NMSC2) that may participate in pathogen recognition. We demonstrated that these pulmonary SCs produce chemokines and cytokines upon LPS stimulation using in vitro conditions. Furthermore, we challenged mouse lungs with LPS and found that NMSC1 exhibits an enriched proinflammatory response among all SC subtypes. Collectively, these findings define the molecular profiles of lung SCs and suggest a potential role for NMSCs in lung inflammation.


Asunto(s)
Lipopolisacáridos , Transcriptoma , Ratones , Humanos , Animales , Lipopolisacáridos/metabolismo , Células de Schwann/metabolismo , Pulmón
3.
Nucleic Acids Res ; 49(22): 12785-12804, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34871443

RESUMEN

Genome instability is a condition characterized by the accumulation of genetic alterations and is a hallmark of cancer cells. To uncover new genes and cellular pathways affecting endogenous DNA damage and genome integrity, we exploited a Synthetic Genetic Array (SGA)-based screen in yeast. Among the positive genes, we identified VID22, reported to be involved in DNA double-strand break repair. vid22Δ cells exhibit increased levels of endogenous DNA damage, chronic DNA damage response activation and accumulate DNA aberrations in sequences displaying high probabilities of forming G-quadruplexes (G4-DNA). If not resolved, these DNA secondary structures can block the progression of both DNA and RNA polymerases and correlate with chromosome fragile sites. Vid22 binds to and protects DNA at G4-containing regions both in vitro and in vivo. Loss of VID22 causes an increase in gross chromosomal rearrangement (GCR) events dependent on G-quadruplex forming sequences. Moreover, the absence of Vid22 causes defects in the correct maintenance of G4-DNA rich elements, such as telomeres and mtDNA, and hypersensitivity to the G4-stabilizing ligand TMPyP4. We thus propose that Vid22 is directly involved in genome integrity maintenance as a novel regulator of G4 metabolism.


Asunto(s)
G-Cuádruplex , Inestabilidad Genómica , Proteínas de la Membrana/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Aberraciones Cromosómicas , Daño del ADN , Genoma Fúngico , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homeostasis del Telómero
4.
Cancer Cell ; 41(10): 1717-1730.e4, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37738976

RESUMEN

Recent data have shown that gut microbiota has a major impact on the clinical response to immune checkpoint inhibitors (ICIs) in the context of solid tumors. ICI-based therapy acts by unlocking cognate cytotoxic T lymphocyte (CTL) effector responses, and increased sensitivity to ICIs is due to an enhancement of patients' tumor antigen (TA)-specific CTL responses. Cancer clearance by TA-specific CTL requires expression of relevant TAs on cancer cells' HLA class I molecules, and reduced HLA class I expression is a common mechanism used by cancer cells to evade the immune system. Here, we show that metabolites released by bacteria, in particular, phytosphingosine, can upregulate HLA class I expression on cancer cells, sensitizing them to TA-specific CTL lysis in vitro and in vivo, in combination with immunotherapy. This effect is mediated by postbiotic-induced upregulation of NLRC5 in response to upstream MYD88-NF-κB activation, thus significantly controlling tumor growth.

5.
Science ; 374(6566): 439-448, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34672740

RESUMEN

Up to 40% of patients with inflammatory bowel disease present with psychosocial disturbances. We previously identified a gut vascular barrier that controls the dissemination of bacteria from the intestine to the liver. Here, we describe a vascular barrier in the brain choroid plexus (PVB) that is modulated in response to intestinal inflammation through bacteria-derived lipopolysaccharide. The inflammatory response induces PVB closure after gut vascular barrier opening by the up-regulation of the wingless-type, catenin-beta 1 (Wnt/ß-catenin) signaling pathway, rendering it inaccessible to large molecules. In a model of genetically driven closure of choroid plexus endothelial cells, we observed a deficit in short-term memory and anxiety-like behavior, suggesting that PVB closure may correlate with mental deficits. Inflammatory bowel disease­related mental symptoms may thus be the consequence of a deregulated gut­brain vascular axis.


Asunto(s)
Plexo Coroideo/irrigación sanguínea , Plexo Coroideo/fisiopatología , Colitis Ulcerosa/fisiopatología , Colitis Ulcerosa/psicología , Intestinos/fisiopatología , Trastornos de la Memoria/fisiopatología , Memoria a Corto Plazo , Animales , Ansiedad/etiología , Ansiedad/fisiopatología , Barrera Hematoencefálica/patología , Colitis Ulcerosa/complicaciones , Dextranos , Modelos Animales de Enfermedad , Humanos , Lipopolisacáridos , Trastornos de la Memoria/etiología , Ratones , Ratones Endogámicos C57BL , Microglía/patología , Transducción de Señal , Uniones Estrechas/patología , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA