Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Renal Physiol ; 326(4): F635-F641, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38357719

RESUMEN

Acute kidney injury (AKI) is a common finding in hospitalized patients, particularly those who are critically ill. The development of AKI is associated with several adverse outcomes including mortality, morbidity, progression to chronic kidney disease, and an increase in healthcare expenditure. Despite the well-established negative impact of AKI and rigorous efforts to better define, identify, and implement targeted therapies, the overall approach to the treatment of AKI continues to principally encompass supportive measures. This enduring challenge is primarily due to the heterogeneous nature of insults that activate many independent and overlapping molecular pathways. Consequently, it is evident that the identification of common mechanisms that mediate the pathogenesis of AKI, independent of etiology and engaged pathophysiological pathways, is of paramount importance and could lead to the identification of novel therapeutic targets. To better distinguish the commonly modulated mechanisms of AKI, we explored the transcriptional characteristics of human kidney biopsies from patients with acute tubular necrosis (ATN), and acute interstitial nephritis (AIN) using a NanoString inflammation panel. Subsequently, we used publicly available single-cell transcriptional resources to better interpret the generated transcriptional findings. Our findings identify robust acute kidney injury (AKI-induced) developmental reprogramming of macrophages (MΦ) with the expansion of C1Q+, CD163+ MΦ that is independent of the etiology of AKI and conserved across mouse and human species. These results would expand the current understanding of the pathophysiology of AKI and potentially offer novel targets for additional studies to enhance the translational transition of AKI research.NEW & NOTEWORTHY Our findings identify robust acute kidney injury (AKI)-induced developmental reprogramming of macrophages (MΦ) with the expansion of C1Q+, CD163+ MΦ that is independent of the etiology of AKI and conserved across mouse and human species.


Asunto(s)
Lesión Renal Aguda , Necrosis Tubular Aguda , Nefritis Intersticial , Humanos , Animales , Ratones , Complemento C1q , Lesión Renal Aguda/inducido químicamente , Necrosis Tubular Aguda/patología , Nefritis Intersticial/patología , Macrófagos/metabolismo , Riñón/metabolismo
2.
Curr Med Imaging ; 20: 1-9, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389364

RESUMEN

BACKGROUND: Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a genetic disorder that causes uncontrolled kidney cyst growth, leading to kidney volume enlargement and renal function loss over time. Total kidney volume (TKV) and cyst burdens have been used as prognostic imaging biomarkers for ADPKD. OBJECTIVE: This study aimed to evaluate nnUNet for automatic kidney and cyst segmentation in T2-weighted (T2W) MRI images of ADPKD patients. METHODS: 756 kidney images were retrieved from 95 patients in the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) cohort (95 patients × 2 kidneys × 4 follow-up scans). The nnUNet model was trained, validated, and tested on 604, 76, and 76 images, respectively. In contrast, all images of each patient were exclusively assigned to either the training, validation, or test sets to minimize evaluation bias. The kidney and cyst regions defined using a semi-automatic method were employed as ground truth. The model performance was assessed using the Dice Similarity Coefficient (DSC), the intersection over union (IoU) score, and the Hausdorff distance (HD). RESULTS: The test DSC values were 0.96±0.01 (mean±SD) and 0.90±0.05 for kidney and cysts, respectively. Similarly, the IoU scores were 0.91± 0.09 and 0.81±0.06, and the HD values were 12.49±8.71 mm and 12.04±10.41 mm, respectively, for kidney and cyst segmentation. CONCLUSION: The nnUNet model is a reliable tool to automatically determine kidney and cyst volumes in T2W MRI images for ADPKD prognosis and therapy monitoring.


Asunto(s)
Quistes , Riñón Poliquístico Autosómico Dominante , Humanos , Riñón Poliquístico Autosómico Dominante/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Riñón/diagnóstico por imagen
3.
Clin Imaging ; 106: 110068, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38101228

RESUMEN

PURPOSE: This study aimed to investigate if a deep learning model trained with a single institution's data has comparable accuracy to that trained with multi-institutional data for segmenting kidney and cyst regions in magnetic resonance (MR) images of patients affected by autosomal dominant polycystic kidney disease (ADPKD). METHODS: We used TensorFlow with a Keras custom UNet on 2D slices of 756 MRI images of kidneys with ADPKD obtained from four institutions in the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) study. The ground truth was determined via a manual plus global thresholding method. Five models were trained with 80 % of all institutional data (n = 604) and each institutional data (n = 232, 172, 148, or 52), respectively, and validated with 10 % and tested on an unseen 10 % of the data. The model's performance was evaluated using the Dice Similarity Coefficient (DSC). RESULTS: The DSCs by the model trained with all institutional data ranged from 0.92 to 0.95 for kidney image segmentation, only 1-2 % higher than those by the models trained with single institutional data (0.90-0.93).In cyst segmentation, however, the DSCs by the model trained with all institutional data ranged from 0.83 to 0.89, which were 2-20 % higher than those by the models trained with single institutional data (0.66-0.86). CONCLUSION: The UNet performance, when trained with a single institutional dataset, exhibited similar accuracy to the model trained on a multi-institutional dataset. Segmentation accuracy increases with models trained on larger sample sizes, especially in more complex cyst segmentation.


Asunto(s)
Quistes , Aprendizaje Profundo , Riñón Poliquístico Autosómico Dominante , Humanos , Riñón Poliquístico Autosómico Dominante/complicaciones , Riñón Poliquístico Autosómico Dominante/diagnóstico por imagen , Riñón Poliquístico Autosómico Dominante/patología , Riñón/diagnóstico por imagen , Riñón/patología , Imagen por Resonancia Magnética/métodos , Quistes/patología , Procesamiento de Imagen Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA