Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Plant Cell ; 36(2): 404-426, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37804096

RESUMEN

L-serine (Ser) and L-glycine (Gly) are critically important for the overall functioning of primary metabolism. We investigated the interaction of the phosphorylated pathway of Ser biosynthesis (PPSB) with the photorespiration-associated glycolate pathway of Ser biosynthesis (GPSB) using Arabidopsis thaliana PPSB-deficient lines, GPSB-deficient mutants, and crosses of PPSB with GPSB mutants. PPSB-deficient lines mainly showed retarded primary root growth. Mutation of the photorespiratory enzyme Ser-hydroxymethyltransferase 1 (SHMT1) in a PPSB-deficient background resumed primary root growth and induced a change in the plant metabolic pattern between roots and shoots. Grafting experiments demonstrated that metabolic changes in shoots were responsible for the changes in double mutant development. PPSB disruption led to a reduction in nitrogen (N) and sulfur (S) contents in shoots and a general transcriptional response to nutrient deficiency. Disruption of SHMT1 boosted the Gly flux out of the photorespiratory cycle, which increased the levels of the one-carbon (1C) metabolite 5,10-methylene-tetrahydrofolate and S-adenosylmethionine. Furthermore, disrupting SHMT1 reverted the transcriptional response to N and S deprivation and increased N and S contents in shoots of PPSB-deficient lines. Our work provides genetic evidence of the biological relevance of the Ser-Gly-1C metabolic network in N and S metabolism and in interorgan metabolic homeostasis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Serina/metabolismo , Glicina/metabolismo , Carbono/metabolismo , Nitrógeno/metabolismo , Arabidopsis/metabolismo , Redes y Vías Metabólicas/genética , Azufre/metabolismo , Desarrollo de la Planta
2.
New Phytol ; 231(2): 679-694, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33864680

RESUMEN

Cutin and suberin are lipid polyesters deposited in specific apoplastic compartments. Their fundamental roles in plant biology include controlling the movement of gases, water and solutes, and conferring pathogen resistance. Both cutin and suberin have been shown to be present in the Arabidopsis seed coat where they regulate seed dormancy and longevity. In this study, we use accelerated and natural ageing seed assays, glutathione redox potential measures, optical and transmission electron microscopy and gas chromatography-mass spectrometry to demonstrate that increasing the accumulation of lipid polyesters in the seed coat is the mechanism by which the AtHB25 transcription factor regulates seed permeability and longevity. Chromatin immunoprecipitation during seed maturation revealed that the lipid polyester biosynthetic gene long-chain acyl-CoA synthetase 2 (LACS2) is a direct AtHB25 binding target. Gene transfer of this transcription factor to wheat and tomato demonstrated the importance of apoplastic lipid polyesters for the maintenance of seed viability. Our work establishes AtHB25 as a trans-species regulator of seed longevity and has identified the deposition of apoplastic lipid barriers as a key parameter to improve seed longevity in multiple plant species.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes Homeobox , Semillas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Plant Physiol ; 180(1): 153-170, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30787133

RESUMEN

Although the plant Phosphorylated Pathway of l-Ser Biosynthesis (PPSB) is essential for embryo and pollen development, and for root growth, its metabolic implications have not been fully investigated. A transcriptomics analysis of Arabidopsis (Arabidopsis thaliana) PPSB-deficient mutants at night, when PPSB activity is thought to be more important, suggested interaction with the sulfate assimilation process. Because sulfate assimilation occurs mainly in the light, we also investigated it in PPSB-deficient lines in the day. Key genes in the sulfate starvation response, such as the adenosine 5'phosphosulfate reductase genes, along with sulfate transporters, especially those involved in sulfate translocation in the plant, were induced in the PPSB-deficient lines. However, sulfate content was not reduced in these lines as compared with wild-type plants; besides the glutathione (GSH) steady-state levels in roots of PPSB-deficient lines were even higher than in wild type. This suggested that PPSB deficiency perturbs the sulfate assimilation process between tissues/organs. Alteration of thiol distribution in leaves from different developmental stages, and between aerial parts and roots in plants with reduced PPSB activity, provided evidence supporting this idea. Diminished PPSB activity caused an enhanced flux of 35S into thiol biosynthesis, especially in roots. GSH turnover also accelerated in the PPSB-deficient lines, supporting the notion that not only biosynthesis, but also transport and allocation, of thiols were perturbed in the PPSB mutants. Our results suggest that PPSB is required for sulfide assimilation in specific heterotrophic tissues and that a lack of PPSB activity perturbs sulfur homeostasis between photosynthetic and nonphotosynthetic tissues.


Asunto(s)
Arabidopsis/metabolismo , Serina/biosíntesis , Transducción de Señal/genética , Azufre/metabolismo , Arabidopsis/genética , Oxidación-Reducción , Fosforilación , Transcriptoma
4.
Plant Cell Environ ; 43(2): 315-326, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31600827

RESUMEN

Permeability is a crucial trait that affects seed longevity and is regulated by different polymers including proanthocyanidins, suberin, cutin and lignin located in the seed coat. By testing mutants in suberin transport and biosynthesis, we demonstrate the importance of this biopolymer to cope with seed deterioration. Transcriptomic analysis of cog1-2D, a gain-of-function mutant with increased seed longevity, revealed the upregulation of several peroxidase genes. Reverse genetics analysing seed longevity uncovered redundancy within the seed coat peroxidase gene family; however, after controlled deterioration treatment, seeds from the prx2 prx25 double and prx2 prx25 prx71 triple mutant plants presented lower germination than wild-type plants. Transmission electron microscopy analysis of the seed coat of these mutants showed a thinner palisade layer, but no changes were observed in proanthocyanidin accumulation or in the cuticle layer. Spectrophotometric quantification of acetyl bromide-soluble lignin components indicated changes in the amount of total polyphenolics derived from suberin and/or lignin in the mutant seeds. Finally, the increased seed coat permeability to tetrazolium salts observed in the prx2 prx25 and prx2 prx25 prx71 mutant lines suggested that the lower permeability of the seed coats caused by altered polyphenolics is likely to be the main reason explaining their reduced seed longevity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Peroxidasas/metabolismo , Semillas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Germinación/fisiología , Lignina , Metabolismo de los Lípidos , Lípidos , Lípidos de la Membrana , Mutación , Peroxidasas/genética , Proantocianidinas , Semillas/genética
5.
Int J Mol Sci ; 21(3)2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32050714

RESUMEN

Intracellular acid stress inhibits plant growth by unknown mechanisms and it occurs in acidic soils and as consequence of other stresses. In order to identify mechanisms of acid toxicity, we screened activation-tagging lines of Arabidopsis thaliana for tolerance to intracellular acidification induced by organic acids. A dominant mutant, sbt4.13-1D, was isolated twice and shown to over-express subtilase SBT4.13, a protease secreted into endoplasmic reticulum. Activity measurements and immuno-detection indicate that the mutant contains less plasma membrane H+-ATPase (PMA) than wild type, explaining the small size, electrical depolarization and decreased cytosolic pH of the mutant but not organic acid tolerance. Addition of acetic acid to wild-type plantlets induces production of ROS (Reactive Oxygen Species) measured by dichlorodihydrofluorescein diacetate. Acid-induced ROS production is greatly decreased in sbt4.13-1D and atrboh-D,F mutants. The latter is deficient in two major NADPH oxidases (NOXs) and is tolerant to organic acids. These results suggest that intracellular acidification activates NOXs and the resulting oxidative stress is important for inhibition of growth. The inhibition of acid-activated NOXs in the sbt4.13-1D mutant compensates inhibition of PMA to increase acid tolerance.


Asunto(s)
Germinación , Estrés Oxidativo , Protones , Subtilisinas/genética , Arabidopsis , Proteínas de Arabidopsis/genética , Mutación , NADPH Oxidasas/genética , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Subtilisinas/metabolismo
6.
Plant Physiol ; 176(2): 1182-1198, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28951489

RESUMEN

In plants, phosphoglycerate kinase (PGK) converts 1,3-bisphosphoglycerate into 3-phosphoglycerate in glycolysis but also participates in the reverse reaction in gluconeogenesis and the Calvin-Benson cycle. In the databases, we found three genes that encode putative PGKs. Arabidopsis (Arabidopsis thaliana) PGK1 was localized exclusively in the chloroplasts of photosynthetic tissues, while PGK2 was expressed in the chloroplast/plastid of photosynthetic and nonphotosynthetic cells. PGK3 was expressed ubiquitously in the cytosol of all studied cell types. Measurements of carbohydrate content and photosynthetic activities in PGK mutants and silenced lines corroborated that PGK1 was the photosynthetic isoform, while PGK2 and PGK3 were the plastidial and cytosolic glycolytic isoforms, respectively. The pgk1.1 knockdown mutant displayed reduced growth, lower photosynthetic capacity, and starch content. The pgk3.2 knockout mutant was characterized by reduced growth but higher starch levels than the wild type. The pgk1.1 pgk3.2 double mutant was bigger than pgk3.2 and displayed an intermediate phenotype between the two single mutants in all measured biochemical and physiological parameters. Expression studies in PGK mutants showed that PGK1 and PGK3 were down-regulated in pgk3.2 and pgk1.1, respectively. These results indicate that the down-regulation of photosynthetic activity could be a plant strategy when glycolysis is impaired to achieve metabolic adjustment and optimize growth. The double mutants of PGK3 and the triose-phosphate transporter (pgk3.2 tpt3) displayed a drastic growth phenotype, but they were viable. This implies that other enzymes or nonspecific chloroplast transporters could provide 3-phosphoglycerate to the cytosol. Our results highlight both the complexity and the plasticity of the plant primary metabolic network.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Fosfoglicerato Quinasa/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Citosol/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Glicéricos/metabolismo , Metabolómica/métodos , Familia de Multigenes , Mutación , Fosfoglicerato Quinasa/genética , Componentes Aéreos de las Plantas/genética , Componentes Aéreos de las Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Plásticos/metabolismo
7.
Plant J ; 89(6): 1146-1158, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27984670

RESUMEN

The presence of two glycolytic pathways working in parallel in plastids and cytosol has complicated the understanding of this essential process in plant cells, especially the integration of the plastidial pathway into the metabolism of heterotrophic and autotrophic organs. It is assumed that this integration is achieved by transport systems, which exchange glycolytic intermediates across plastidial membranes. However, it is unknown whether plastidial and cytosolic pools of 3-phosphoglycerate (3-PGA) can equilibrate in non-photosynthetic tissues. To resolve this question, we employed Arabidopsis mutants of the plastidial glycolytic isoforms of glyceraldehyde-3-phosphate dehydrogenase (GAPCp) that express the triose phosphate translocator (TPT) under the control of the 35S (35S:TPT) or the native GAPCp1 (GAPCp1:TPT) promoters. TPT expression under the control of both promoters complemented the vegetative developmental defects and metabolic disorders of the GAPCp double mutants (gapcp1gapcp2). However, as the 35S is poorly expressed in the tapetum, full vegetative and reproductive complementation of gapcp1gapcp2 was achieved only by transforming this mutant with the GAPCp1:TPT construct. Our results indicate that the main function of GAPCp is to supply 3-PGA for anabolic pathways in plastids of heterotrophic cells and suggest that the plastidial glycolysis may contribute to fatty acid biosynthesis in seeds. They also suggest a 3-PGA deficiency in the plastids of gapcp1gapcp2, and that 3-PGA pools between cytosol and plastid do not equilibrate in heterotrophic cells.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Plastidios/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Ácidos Glicéricos/metabolismo , Glucólisis/genética , Glucólisis/fisiología , Plastidios/genética
8.
Plant J ; 87(6): 583-96, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27227784

RESUMEN

Light is a major regulator of plant growth and development by antagonizing gibberellins (GA), and we provide evidence for a role of light perception and GA in seed coat formation and seed tolerance to deterioration. We have identified two activation-tagging mutants of Arabidopsis thaliana, cog1-2D and cdf4-1D, with improved seed tolerance to deterioration linked to increased expression of COG1/DOF1.5 and CDF4/DOF2.3, respectively. These encode two homologous DOF transcription factors, with COG1 most highly expressed in seeds. Improved tolerance to seed deterioration was reproduced in transgenic plants overexpressing these genes, and loss of function from RNA interference resulted in opposite phenotypes. Overexpressions of COG1 and CDF4 have been described to attenuate various light responses mediated by phytochromes. Accordingly, we found that phyA and phyB mutants exhibit increased seed tolerance to deterioration. The phenotype of tolerance to deterioration conferred by gain of function of COG1 and by loss of function of phytochromes is of maternal origin, is also observed under natural aging conditions and correlates with a seed coat with increased suberin and reduced permeability. In developing siliques of the cog1-2D mutant the expression of the GA biosynthetic gene GA3OX3 and levels of GA1 are higher than in the wild type. These results explain the antagonism between phytochromes and COG1 in terms of the inhibition and the activation, respectively, of GA action.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Giberelinas/metabolismo , Semillas/fisiología , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Luz , Lípidos/genética , Mutación , Fitocromo/genética , Fitocromo/metabolismo , Plantas Modificadas Genéticamente , Factores de Transcripción/genética
9.
Plant Physiol ; 169(3): 1619-37, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26134167

RESUMEN

This study functionally characterizes the Arabidopsis (Arabidopsis thaliana) plastidial glycolytic isoforms of glyceraldehyde-3-phosphate dehydrogenase (GAPCp) in photosynthetic and heterotrophic cells. We expressed the enzyme in gapcp double mutants (gapcp1gapcp2) under the control of photosynthetic (Rubisco small subunit RBCS2B [RBCS]) or heterotrophic (phosphate transporter PHT1.2 [PHT]) cell-specific promoters. Expression of GAPCp1 under the control of RBCS in gapcp1gapcp2 had no significant effect on the metabolite profile or growth in the aerial part (AP). GAPCp1 expression under the control of the PHT promoter clearly affected Arabidopsis development by increasing the number of lateral roots and having a major effect on AP growth and metabolite profile. Our results indicate that GAPCp1 is not functionally important in photosynthetic cells but plays a fundamental role in roots and in heterotrophic cells of the AP. Specifically, GAPCp activity may be required in root meristems and the root cap for normal primary root growth. Transcriptomic and metabolomic analyses indicate that the lack of GAPCp activity affects nitrogen and carbon metabolism as well as mineral nutrition and that glycerate and glutamine are the main metabolites responding to GAPCp activity. Thus, GAPCp could be an important metabolic connector of glycolysis with other pathways, such as the phosphorylated pathway of serine biosynthesis, the ammonium assimilation pathway, or the metabolism of γ-aminobutyrate, which in turn affect plant development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Carbono/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Nitrógeno/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clonación Molecular , Regulación Enzimológica de la Expresión Génica/fisiología , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Isoenzimas , Regiones Promotoras Genéticas
10.
Plant Cell ; 25(6): 2084-101, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23771893

RESUMEN

This study characterizes the phosphorylated pathway of Ser biosynthesis (PPSB) in Arabidopsis thaliana by targeting phosphoserine phosphatase (PSP1), the last enzyme of the pathway. Lack of PSP1 activity delayed embryo development, leading to aborted embryos that could be classified as early curled cotyledons. The embryo-lethal phenotype of psp1 mutants could be complemented with PSP1 cDNA under the control of Pro35S (Pro35S:PSP1). However, this construct, which was poorly expressed in the anther tapetum, did not complement mutant fertility. Microspore development in psp1.1/psp1.1 Pro35S:PSP1 arrested at the polarized stage. The tapetum from these lines displayed delayed and irregular development. The expression of PSP1 in the tapetum at critical stages of microspore development suggests that PSP1 activity in this cell layer is essential in pollen development. In addition to embryo death and male sterility, conditional psp1 mutants displayed a short-root phenotype, which was reverted in the presence of Ser. A metabolomic study demonstrated that the PPSB plays a crucial role in plant metabolism by affecting glycolysis, the tricarboxylic acid cycle, and the biosynthesis of amino acids. We provide evidence of the crucial role of the PPSB in embryo, pollen, and root development and suggest that this pathway is an important link connecting primary metabolism with development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Raíces de Plantas/metabolismo , Polen/metabolismo , Semillas/metabolismo , Serina/biosíntesis , Aminoácidos/biosíntesis , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Vías Biosintéticas/genética , Ciclo del Ácido Cítrico/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucólisis/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Immunoblotting , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Mutación , Monoéster Fosfórico Hidrolasas/genética , Fosforilación , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Polen/genética , Polen/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/genética , Semillas/crecimiento & desarrollo
11.
Plant J ; 80(6): 1057-71, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25330042

RESUMEN

Membrane-delimited events play a crucial role for ABA signaling and PYR/PYL/RCAR ABA receptors, clade A PP2Cs and SnRK2/CPK kinases modulate the activity of different plasma membrane components involved in ABA action. Therefore, the turnover of PYR/PYL/RCARs in the proximity of plasma membrane might be a step that affects receptor function and downstream signaling. In this study we describe a single-subunit RING-type E3 ubiquitin ligase RSL1 that interacts with the PYL4 and PYR1 ABA receptors at the plasma membrane. Overexpression of RSL1 reduces ABA sensitivity and rsl1 RNAi lines that impair expression of several members of the RSL1/RFA gene family show enhanced sensitivity to ABA. RSL1 bears a C-terminal transmembrane domain that targets the E3 ligase to plasma membrane. Accordingly, bimolecular fluorescent complementation (BiFC) studies showed the RSL1-PYL4 and RSL1-PYR1 interaction is localized to plasma membrane. RSL1 promoted PYL4 and PYR1 degradation in vivo and mediated in vitro ubiquitylation of the receptors. Taken together, these results suggest ubiquitylation of ABA receptors at plasma membrane is a process that might affect their function via effect on their half-life, protein interactions or trafficking.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Receptores de Superficie Celular/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Semivida , Proteínas de Transporte de Membrana/genética , Receptores de Superficie Celular/genética , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
12.
Planta ; 242(1): 39-52, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25809153

RESUMEN

MAIN CONCLUSION: A fungal gene encoding a transcription factor is expressed from its own promoter in Arabidopsis phloem and improves drought tolerance by reducing transpiration and increasing osmotic potential. Horizontal gene transfer from unrelated organisms has occurred in the course of plant evolution, suggesting that some foreign genes may be useful to plants. The CtHSR1 gene, previously isolated from the halophytic yeast Candida tropicalis, encodes a heat-shock transcription factor-related protein. CtHSR1, with expression driven by its own promoter or by the Arabidopsis UBQ10 promoter, was introduced into the model plant Arabidopsis thaliana by Agrobacterium tumefaciens-mediated transformation and the resulting transgenic plants were more tolerant to drought than controls. Fusions of the CtHSR1 promoter with ß-glucuronidase reporter gene indicated that this fungal promoter drives expression to phloem tissues. A chimera of CtHSR1 and green fluorescence protein is localized at the cell nucleus. The physiological mechanism of drought tolerance in transgenic plants is based on reduced transpiration (which correlates with decreased opening of stomata and increased levels of jasmonic acid) and increased osmotic potential (which correlates with increased proline accumulation). Transcriptomic analysis indicates that the CtHSR1 transgenic plants overexpressed a hundred of genes, including many relevant to stress defense such as LOX4 (involved in jasmonic acid synthesis) and P5CS1 (involved in proline biosynthesis). The promoters of the induced genes were enriched in upstream activating sequences for water stress induction. These results demonstrate that genes from unrelated organisms can have functional expression in plants from its own promoter and expand the possibilities of useful transgenes for plant biotechnology.


Asunto(s)
Adaptación Fisiológica , Arabidopsis/fisiología , Candida/genética , Sequías , Proteínas Fúngicas/genética , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Arabidopsis/genética , Núcleo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes Fúngicos , Proteínas Fluorescentes Verdes/metabolismo , Motivos de Nucleótidos/genética , Floema/genética , Fotosíntesis , Estomas de Plantas/fisiología , Plantas Modificadas Genéticamente , Prolina/metabolismo , Nicotiana/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma/genética
13.
Plant Physiol ; 164(2): 999-1010, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24335333

RESUMEN

Seed longevity is crucial for agriculture and plant genetic diversity, but it is limited by cellular damage during storage. Seeds are protected against aging by cellular defenses and by structures such as the seed coat. We have screened an activation-tagging mutant collection of Arabidopsis (Arabidopsis thaliana) and selected four dominant mutants with improved seed longevity (isl1-1D to isl4-1D) under both natural and accelerated aging conditions. In the isl1-1D mutant, characterized in this work, overexpression of the transcription factor ARABIDOPSIS THALIANA HOMEOBOX25 (ATHB25; At5g65410) increases the expression of GIBBERELLIC ACID3-OXIDASE2, encoding a gibberellin (GA) biosynthetic enzyme, and the levels of GA1 and GA4 are higher (3.2- and 1.4-fold, respectively) in the mutant than in the wild type. The morphological and seed longevity phenotypes of the athb25-1D mutant were recapitulated in transgenic plants with moderate (4- to 6-fold) overexpression of ATHB25. Simultaneous knockdown of ATHB25, ATHB22, and ATHB31 expression decreases seed longevity, as does loss of ATHB25 and ATHB22 function in a double mutant line. Seeds from wild-type plants treated with GA and from a quintuple DELLA mutant (with constitutive GA signaling) are more tolerant to aging, providing additional evidence for a role of GA in seed longevity. A correlation was observed in several genotypes between seed longevity and mucilage formation at the seed surface, suggesting that GA may act by reinforcing the seed coat. This mechanism was supported by the observation of a maternal effect in reciprocal crosses between the wild type and the athb25-1D mutant.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Giberelinas/farmacología , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Genotipo , Germinación/efectos de los fármacos , Mutación/genética , Motivos de Nucleótidos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Mucílago de Planta/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Semillas/efectos de los fármacos , Coloración y Etiquetado , Triazoles/farmacología
14.
Metab Eng ; 23: 136-44, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24685653

RESUMEN

Transgenic Lavandula latifolia plants overexpressing the linalool synthase (LIS) gene from Clarkia breweri, encoding the LIS enzyme that catalyzes the synthesis of linalool were generated. Most of these plants increased significantly their linalool content as compared to controls, especially in the youngest leaves, where a linalool increase up to a 1000% was observed. The phenotype of increased linalool content observed in young leaves was maintained in those T1 progenies that inherit the LIS transgene, although this phenotype was less evident in the flower essential oil. Cross-pollination of transgenic spike lavender plants allowed the generation of double transgenic plants containing the DXS (1-deoxy-d-xylulose-5-P synthase), coding for the first enzyme of the methyl-d-erythritol-4-phosphate pathway, and LIS genes. Both essential oil yield and linalool content in double DXS-LIS transgenic plants were lower than that of their parentals, which could be due to co-suppression effects linked to the structures of the constructs used.


Asunto(s)
Lavandula , Monoterpenos/metabolismo , Hojas de la Planta , Plantas Modificadas Genéticamente , Monoterpenos Acíclicos , Clarkia/enzimología , Clarkia/genética , Eritritol/análogos & derivados , Eritritol/genética , Eritritol/metabolismo , Hidroliasas/biosíntesis , Hidroliasas/genética , Lavandula/genética , Lavandula/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Fosfatos de Azúcar/genética , Fosfatos de Azúcar/metabolismo , Transgenes
15.
Plant Physiol ; 163(3): 1164-78, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24058165

RESUMEN

This work contributes to unraveling the role of the phosphorylated pathway of serine (Ser) biosynthesis in Arabidopsis (Arabidopsis thaliana) by functionally characterizing genes coding for the first enzyme of this pathway, 3-phosphoglycerate dehydrogenase (PGDH). We identified two Arabidopsis plastid-localized PGDH genes (3-PGDH and EMBRYO SAC DEVELOPMENT ARREST9 [EDA9]) with a high percentage of amino acid identity with a previously identified PGDH. All three genes displayed a different expression pattern indicating that they are not functionally redundant. pgdh and 3-pgdh mutants presented no drastic visual phenotypes, but eda9 displayed delayed embryo development, leading to aborted embryos that could be classified as early curled cotyledons. The embryo-lethal phenotype of eda9 was complemented with an EDA9 complementary DNA under the control of a 35S promoter (Pro-35S:EDA9). However, this construct, which is poorly expressed in the anther tapetum, did not complement mutant fertility. Microspore development in eda9.1eda9.1 Pro-35S:EDA9 was arrested at the polarized stage. Pollen from these lines lacked tryphine in the interstices of the exine layer, displayed shrunken and collapsed forms, and were unable to germinate when cultured in vitro. A metabolomic analysis of PGDH mutant and overexpressing plants revealed that all three PGDH family genes can regulate Ser homeostasis, with PGDH being quantitatively the most important in the process of Ser biosynthesis at the whole-plant level. By contrast, the essential role of EDA9 could be related to its expression in very specific cell types. We demonstrate the crucial role of EDA9 in embryo and pollen development, suggesting that the phosphorylated pathway of Ser biosynthesis is an important link connecting primary metabolism with development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Familia de Multigenes , Fosfoglicerato-Deshidrogenasa/metabolismo , Plastidios/enzimología , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Isoenzimas/clasificación , Isoenzimas/genética , Isoenzimas/metabolismo , Metabolómica/métodos , Microscopía Confocal , Datos de Secuencia Molecular , Mutación , Fosfoglicerato-Deshidrogenasa/clasificación , Fosfoglicerato-Deshidrogenasa/genética , Fosforilación , Filogenia , Componentes Aéreos de las Plantas/enzimología , Componentes Aéreos de las Plantas/genética , Componentes Aéreos de las Plantas/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Polen/enzimología , Polen/genética , Polen/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/enzimología , Semillas/genética , Semillas/metabolismo , Homología de Secuencia de Aminoácido , Serina/genética , Serina/metabolismo
16.
Plant Physiol ; 152(4): 1830-41, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20107025

RESUMEN

Plant metabolism is highly coordinated with development. However, an understanding of the whole picture of metabolism and its interactions with plant development is scarce. In this work, we show that the deficiency in the plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPCp) leads to male sterility in Arabidopsis (Arabidopsis thaliana). Pollen from homozygous gapcp double mutant plants (gapcp1gapcp2) displayed shrunken and collapsed forms and were unable to germinate when cultured in vitro. The pollen alterations observed in gapcp1gapcp2 were attributed to a disorganized tapetum layer. Accordingly, the expression of several of the genes involved in tapetum development was down-regulated in gapcp1gapcp2. The fertility of gapcp1gapcp2 was rescued by transforming this mutant with a construct carrying the GAPCp1 cDNA under the control of its native promoter (pGAPCp1::GAPCp1c). However, the GAPCp1 or GAPCp2 cDNA under the control of the 35S promoter (p35S::GAPCp), which is poorly expressed in the tapetum, did not complement the mutant fertility. Mutant GAPCp isoforms deficient in the catalytic activity of the enzyme were unable to complement the sterile phenotype of gapcp1gapcp2, thus confirming that both the expression and catalytic activity of GAPCp in anthers are necessary for mature pollen development. A metabolomic study in flower buds indicated that the most important difference between the sterile (gapcp1gapcp2, gapcp1gapcp2-p35S::GAPCp) and the fertile (wild-type plants, gapcp1gapcp2-pGAPCp1::GAPCp1c) lines was the increase in the signaling molecule trehalose. This work corroborates the importance of plastidial glycolysis in plant metabolism and provides evidence for the crucial role of GAPCps in pollen development. It additionally brings new insights into the complex interactions between metabolism and development.


Asunto(s)
Arabidopsis/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Plastidios/enzimología , Polen/metabolismo , Arabidopsis/genética
17.
J Exp Bot ; 62(3): 1229-39, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21068209

RESUMEN

Abscisic acid (ABA) controls plant development and regulates plant responses to environmental stresses. A role for ABA in sugar regulation of plant development has also been well documented although the molecular mechanisms connecting the hormone with sugar signal transduction pathways are not well understood. In this work it is shown that Arabidopsis thaliana mutants deficient in plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase (gapcp1gapcp2) are ABA insensitive in growth, stomatal closure, and germination assays. The ABA levels of gapcp1gapcp2 were normal, suggesting that the ABA signal transduction pathway is impaired in the mutants. ABA modified gapcp1gapcp2 gene expression, but the mutant response to the hormone differed from that observed in wild-type plants. The gene expression of the transcription factor ABI4, involved in both sugar and ABA signalling, was altered in gapcp1gapcp2, suggesting that their ABA insensitivity is mediated, at least partially, through this transcriptional regulator. Serine supplementation was able partly to restore the ABA sensitivity of gapcp1gapcp2, indicating that amino acid homeostasis and/or serine metabolism may also be important determinants in the connections of ABA with primary metabolism. Overall, these studies provide new insights into the links between plant primary metabolism and ABA signalling, and demonstrate the importance of plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase in these interactions.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Gliceraldehído-3-Fosfato Deshidrogenasas/deficiencia , Reguladores del Crecimiento de las Plantas/metabolismo , Plastidios/enzimología , Transducción de Señal , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Metabolismo de los Hidratos de Carbono , Regulación de la Expresión Génica de las Plantas , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Plastidios/genética , Plastidios/metabolismo
18.
Plant Sci ; 306: 110863, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33775368

RESUMEN

Unlike animals, plants possess diverse L-serine (Ser) biosynthetic pathways. One of them, the Phosphorylated Pathway of Serine Biosynthesis (PPSB) has been recently described as essential for embryo, pollen and root development, and required for ammonium and sulfur assimilation. The first and rate limiting step of PPSB is the reaction catalyzed by the enzyme phosphoglycerate dehydrogenase (PGDH). In Arabidopsis, the PGDH family consists of three genes, PGDH1, PGDH2 and PGDH3. PGDH1 is characterized as being the essential gene of the family. However, the biological significance of PGDH2 and PGDH3 remains unknown. In this manuscript, we have functionally characterized PGDH2 and PGDH3. Phenotypic, metabolomic and gene expression analysis in PGDH single, double and triple mutants indicate that both PGDH2 and PGDH3 are functional, affecting plant metabolism and development. PGDH2 has a stronger effect on plant growth than PGDH3, having a partial redundant role with PGDH1. PGDH3, however, could have additional functions in photosynthetic cells unrelated to Ser biosynthesis.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Fosfoglicerato-Deshidrogenasa/genética , Fosfoglicerato-Deshidrogenasa/metabolismo , Serina/biosíntesis , Serina/genética , Vías Biosintéticas , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas
19.
Metab Eng ; 10(3-4): 166-77, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18514005

RESUMEN

We generated transgenic spike lavender (Lavandula latifolia) plants constitutively expressing the limonene synthase (LS) gene from spearmint (Mentha spicata), encoding the LS enzyme that catalyzes the synthesis of limonene from geranyl diphosphate. Overexpression of the LS transgene did not consistently affect monoterpene profile in pooled leaves or flowers from transgenic T(0) plants. Analyses from cohorts of leaves sampled at different developmental stages showed that essential oil accumulation in transgenic and control plants was higher in developing than in mature leaves. Furthermore, developing leaves of transgenic plants contained increased limonene contents (more than 450% increase compared to controls) that correlated with the highest transcript accumulation of the LS gene. The levels of other monoterpene pathway components were also significantly altered. T(0) transgenic plants were grown for 2 years, self-pollinated, and the T(1) seeds obtained. The increased limonene phenotype was maintained in the progenies that inherited the LS transgene.


Asunto(s)
Liasas Intramoleculares/genética , Lavandula/fisiología , Mentha spicata/fisiología , Monoterpenos/metabolismo , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente/fisiología , Mejoramiento Genético/métodos , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/metabolismo
20.
Plant Biotechnol J ; 5(6): 746-58, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17714440

RESUMEN

Spike lavender (Lavandula latifolia) essential oil is widely used in the perfume, cosmetic, flavouring and pharmaceutical industries. Thus, modifications of yield and composition of this essential oil by genetic engineering should have important scientific and commercial applications. We generated transgenic spike lavender plants expressing the Arabidopsis thaliana HMG1 cDNA, encoding the catalytic domain of 3-hydroxy-3-methylglutaryl CoA reductase (HMGR1S), a key enzyme of the mevalonic acid (MVA) pathway. Transgenic T0 plants accumulated significantly more essential oil constituents as compared to controls (up to 2.1- and 1.8-fold in leaves and flowers, respectively). Enhanced expression of HMGR1S also increased the amount of the end-product sterols, beta-sitosterol and stigmasterol (average differences of 1.8- and 1.9-fold, respectively), but did not affect the accumulation of carotenoids or chlorophylls. We also analysed T1 plants derived from self-pollinated seeds of T0 lines that flowered after growing for 2 years in the greenhouse. The increased levels of essential oil and sterols observed in the transgenic T0 plants were maintained in the progeny that inherited the HMG1 transgene. Our results demonstrate that genetic manipulation of the MVA pathway increases essential oil yield in spike lavender, suggesting a contribution for this cytosolic pathway to monoterpene and sesquiterpene biosynthesis in leaves and flowers of the species.


Asunto(s)
Hidroximetilglutaril-CoA Reductasas/metabolismo , Lavandula/enzimología , Aceites Volátiles/metabolismo , Fitosteroles/biosíntesis , Pigmentos Biológicos/biosíntesis , Plantas Modificadas Genéticamente/enzimología , Arabidopsis/genética , Carotenoides/metabolismo , Clorofila/metabolismo , Hidroximetilglutaril-CoA Reductasas/genética , Lavandula/genética , Lavandula/metabolismo , Ácido Mevalónico/metabolismo , Monoterpenos/metabolismo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Sesquiterpenos/metabolismo , Sitoesteroles/metabolismo , Estigmasterol/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA