Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(39): e2202178119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36122208

RESUMEN

Acute oxygen (O2) sensing is essential for adaptation of organisms to hypoxic environments or medical conditions with restricted exchange of gases in the lung. The main acute O2-sensing organ is the carotid body (CB), which contains neurosecretory chemoreceptor (glomus) cells innervated by sensory fibers whose activation by hypoxia elicits hyperventilation and increased cardiac output. Glomus cells have mitochondria with specialized metabolic and electron transport chain (ETC) properties. Reduced mitochondrial complex (MC) IV activity by hypoxia leads to production of signaling molecules (NADH and reactive O2 species) in MCI and MCIII that modulate membrane ion channel activity. We studied mice with conditional genetic ablation of MCIII that disrupts the ETC in the CB and other catecholaminergic tissues. Glomus cells survived MCIII dysfunction but showed selective abolition of responsiveness to hypoxia (increased [Ca2+] and transmitter release) with normal responses to other stimuli. Mitochondrial hypoxic NADH and reactive O2 species signals were also suppressed. MCIII-deficient mice exhibited strong inhibition of the hypoxic ventilatory response and altered acclimatization to sustained hypoxia. These data indicate that a functional ETC, with coupling between MCI and MCIV, is required for acute O2 sensing. O2 regulation of breathing results from the integrated action of mitochondrial ETC complexes in arterial chemoreceptors.


Asunto(s)
Complejo III de Transporte de Electrones , Oxígeno , Respiración , Animales , Hipoxia de la Célula/fisiología , Complejo III de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/metabolismo , Canales Iónicos , Ratones , NAD/metabolismo , Oxígeno/metabolismo
2.
PLoS Genet ; 14(6): e1007407, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29879139

RESUMEN

Upon telomerase inactivation, telomeres gradually shorten with each cell division until cells enter replicative senescence. In Saccharomyces cerevisiae, the kinases Mec1/ATR and Tel1/ATM protect the genome during pre-senescence by preventing telomere-telomere fusions (T-TFs) and the subsequent genetic instability associated with fusion-bridge-breakage cycles. Here we report that T-TFs in mec1Δ tel1Δ cells can be suppressed by reducing the pool of available histones. This protection associates neither with changes in bulk telomere length nor with major changes in the structure of subtelomeric chromatin. We show that the absence of Mec1 and Tel1 strongly augments double-strand break (DSB) repair by non-homologous end joining (NHEJ), which might contribute to the high frequency of T-TFs in mec1Δ tel1Δ cells. However, histone depletion does not prevent telomere fusions by inhibiting NHEJ, which is actually increased in histone-depleted cells. Rather, histone depletion protects telomeres from fusions by homologous recombination (HR), even though HR is proficient in maintaining the proliferative state of pre-senescent mec1Δ tel1Δ cells. Therefore, HR during pre-senescence not only helps stalled replication forks but also prevents T-TFs by a mechanism that, in contrast to the previous one, is promoted by a reduction in the histone pool and can occur in the absence of Rad51. Our results further suggest that the Mec1-dependent depletion of histones that occurs during pre-senescence in cells without telomerase (tlc1Δ) prevents T-TFs by favoring the processing of unprotected telomeres by Rad51-independent HR.


Asunto(s)
Senescencia Celular/genética , Histonas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Telómero/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Reparación del ADN por Recombinación/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerasa/genética , Telomerasa/metabolismo
3.
Mol Cell ; 38(5): 662-74, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20541999

RESUMEN

Expression of the INK4b/ARF/INK4a tumor suppressor locus in normal and cancerous cell growth is controlled by methylation of histone H3 at lysine 27 (H3K27me) as directed by the Polycomb group proteins. The antisense noncoding RNA ANRIL of the INK4b/ARF/INK4a locus is also important for expression of the protein-coding genes in cis, but its mechanism has remained elusive. Here we report that chromobox 7 (CBX7) within the polycomb repressive complex 1 binds to ANRIL, and both CBX7 and ANRIL are found at elevated levels in prostate cancer tissues. In concert with H3K27me recognition, binding to RNA contributes to CBX7 function, and disruption of either interaction impacts the ability of CBX7 to repress the INK4b/ARF/INK4a locus and control senescence. Structure-guided analysis reveals the molecular interplay between noncoding RNA and H3K27me as mediated by the conserved chromodomain. Our study suggests a mechanism by which noncoding RNA participates directly in epigenetic transcriptional repression.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina , Silenciador del Gen , Histonas , Lisina/metabolismo , ARN no Traducido/metabolismo , Proteínas Represoras/metabolismo , Animales , Línea Celular Tumoral , Senescencia Celular/fisiología , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Metilación , Modelos Moleculares , Datos de Secuencia Molecular , Familia de Multigenes , Resonancia Magnética Nuclear Biomolecular , Complejo Represivo Polycomb 1 , Proteínas del Grupo Polycomb , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Estructura Terciaria de Proteína , ARN no Traducido/genética , Proteínas Represoras/química , Proteínas Represoras/genética , Transcripción Genética
4.
Proc Natl Acad Sci U S A ; 112(48): 14840-5, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26578803

RESUMEN

RNA polymerase II (RNAPII) transcription elongation is a highly regulated process that greatly influences mRNA levels as well as pre-mRNA splicing. Despite many studies in vitro, how chromatin modulates RNAPII elongation in vivo is still unclear. Here, we show that a decrease in the level of available canonical histones leads to more accessible chromatin with decreased levels of canonical histones and variants H2A.X and H2A.Z and increased levels of H3.3. With this altered chromatin structure, the RNAPII elongation rate increases, and the kinetics of pre-mRNA splicing is delayed with respect to RNAPII elongation. Consistent with the kinetic model of cotranscriptional splicing, the rapid RNAPII elongation induced by histone depletion promotes the skipping of variable exons in the CD44 gene. Indeed, a slowly elongating mutant of RNAPII was able to rescue this defect, indicating that the defective splicing induced by histone depletion is a direct consequence of the increased elongation rate. In addition, genome-wide analysis evidenced that histone reduction promotes widespread alterations in pre-mRNA processing, including intron retention and changes in alternative splicing. Our data demonstrate that pre-mRNA splicing may be regulated by chromatin structure through the modulation of the RNAPII elongation rate.


Asunto(s)
Histonas/metabolismo , ARN Polimerasa II/metabolismo , Precursores del ARN/biosíntesis , Empalme del ARN/fisiología , Elongación de la Transcripción Genética/fisiología , Línea Celular Tumoral , Histonas/genética , Humanos , Receptores de Hialuranos/biosíntesis , Receptores de Hialuranos/genética , ARN Polimerasa II/genética , Precursores del ARN/genética
5.
EMBO J ; 32(9): 1307-21, 2013 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-23563117

RESUMEN

Homologous recombination (HR) is essential for genome integrity. Recombination proteins participate in tolerating DNA lesions that interfere with DNA replication, but can also generate toxic recombination intermediates and genetic instability when they are not properly regulated. Here, we have studied the role of the recombination proteins Rad51 and Rad52 at replication forks and replicative DNA lesions. We show that Rad52 loads Rad51 onto unperturbed replication forks, where they facilitate replication of alkylated DNA by non-repair functions. The recruitment of Rad52 and Rad51 to chromatin during DNA replication is a prerequisite for the repair of the non-DSB DNA lesions, presumably single-stranded DNA gaps, which are generated during the replication of alkylated DNA. We also show that the repair of these lesions requires CDK1 and is not coupled to the fork but rather restricted to G2/M by the replicative checkpoint. We propose a new scenario for HR where Rad52 and Rad51 are recruited to the fork to promote DNA damage tolerance by distinct and cell cycle-regulated replicative and repair functions.


Asunto(s)
Daño del ADN , Replicación del ADN , ADN de Cadena Simple/metabolismo , Recombinasa Rad51/metabolismo , Recombinasa Rad51/fisiología , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Cromatina/efectos de los fármacos , Cromatina/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Reparación del ADN/genética , Reparación del ADN/fisiología , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/fisiología , Metilmetanosulfonato/farmacología , Nucleasa Microcócica/metabolismo , Modelos Biológicos , Unión Proteica/fisiología , Recombinasa Rad51/genética , Recombinación Genética/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética
6.
Nat Neurosci ; 26(2): 226-238, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36624276

RESUMEN

Vaccines against SARS-CoV-2 have been shown to be safe and effective but their protective efficacy against infection in the brain is yet unclear. Here, in the susceptible transgenic K18-hACE2 mouse model of severe coronavirus disease 2019 (COVID-19), we report a spatiotemporal description of SARS-CoV-2 infection and replication through the brain. SARS-CoV-2 brain replication occurs primarily in neurons, leading to neuronal loss, signs of glial activation and vascular damage in mice infected with SARS-CoV-2. One or two doses of a modified vaccinia virus Ankara (MVA) vector expressing the SARS-CoV-2 spike (S) protein (MVA-CoV2-S) conferred full protection against SARS-CoV-2 cerebral infection, preventing virus replication in all areas of the brain and its associated damage. This protection was maintained even after SARS-CoV-2 reinfection. These findings further support the use of MVA-CoV2-S as a promising vaccine candidate against SARS-CoV-2/COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Ratones , Animales , Humanos , Ratones Transgénicos , Vacunas contra la COVID-19 , Encéfalo
7.
Sci Immunol ; 7(70): eabm8161, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35486677

RESUMEN

Effective T cell-mediated immune responses require the proper allocation of metabolic resources to sustain growth, proliferation, and cytokine production. Epigenetic control of the genome also governs T cell transcriptome and T cell lineage commitment and maintenance. Cellular metabolic programs interact with epigenetic regulation by providing substrates for covalent modifications of chromatin. By using complementary genetic, epigenetic, and metabolic approaches, we revealed that tricarboxylic acid (TCA) cycle flux fueled biosynthetic processes while controlling the ratio of succinate/α-ketoglutarate (α-KG) to modulate the activities of dioxygenases that are critical for driving T cell inflammation. In contrast to cancer cells, where succinate dehydrogenase (SDH)/complex II inactivation drives cell transformation and growth, SDH/complex II deficiency in T cells caused proliferation and survival defects when the TCA cycle was truncated, blocking carbon flux to support nucleoside biosynthesis. Replenishing the intracellular nucleoside pool partially relieved the dependence of T cells on SDH/complex II for proliferation and survival. SDH deficiency induced a proinflammatory gene signature in T cells and promoted T helper 1 and T helper 17 lineage differentiation. An increasing succinate/α-KG ratio in SDH-deficient T cells promoted inflammation by changing the pattern of the transcriptional and chromatin accessibility signatures and consequentially increasing the expression of the transcription factor, PR domain zinc finger protein 1. Collectively, our studies revealed a role of SDH/complex II in allocating carbon resources for anabolic processes and epigenetic regulation in T cell proliferation and inflammation.


Asunto(s)
Epigénesis Genética , Succinato Deshidrogenasa , Proliferación Celular , Cromatina , Complejo II de Transporte de Electrones/deficiencia , Humanos , Inflamación/genética , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacología , Errores Innatos del Metabolismo , Enfermedades Mitocondriales , Nucleósidos , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo , Succinatos
8.
Pflugers Arch ; 459(5): 775-83, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20049482

RESUMEN

In this study, we explored the presence of aquaporins (AQPs), a family of membrane water channel proteins, in carotid body (CB) type I chemoreceptor cells. The CB is a polymodal chemoreceptor whose major function is to detect changes in arterial O2 tension to elicit hyperventilation during hypoxia. The CB has also been proposed to function as a systemic osmoreceptor, thus we hypothesized that the presence of AQPs in type I cell membrane may confer higher sensitivity to osmolarity changes and hence accelerate the activation of chemoreceptor cells. We detected the expression of AQP1, AQP7, and AQP8 in the CB and confirmed the location of AQP1 in type I cells. We have also shown that inhibition of AQP1 expression clearly reduced type I cell swelling after a hyposmotic shock, demonstrating that AQP1 has a major contribution in transmembrane water movement in these chemoreceptor cells. Interestingly, CB AQP1 expression levels change during postnatal development, increasing during the first postnatal weeks as the organ matures. In conclusion, in this study, we report the novel observation that AQPs are expressed in the CB. We also show that AQP1 mediates water transport across the cell membrane of type I cells, supporting the contribution of this protein to the osmoreception function of the CB.


Asunto(s)
Acuaporina 1/metabolismo , Transporte Biológico/fisiología , Cuerpo Carotídeo/fisiología , Agua/metabolismo , Animales , Acuaporina 1/genética , Regulación de la Expresión Génica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas
9.
Front Neurosci ; 13: 664, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31297047

RESUMEN

Neurogenesis in developing and adult mammalian brain is a tightly regulated process that relies on neural stem cell (NSC) activity. There is increasing evidence that mitochondrial metabolism affects NSC homeostasis and differentiation but the precise role of mitochondrial function in the neurogenic process requires further investigation. Here, we have analyzed how mitochondrial complex I (MCI) dysfunction affects NSC viability, proliferation and differentiation, as well as survival of the neural progeny. We have generated a conditional knockout model (hGFAP-NDUFS2 mice) in which expression of the NDUFS2 protein, essential for MCI function, is suppressed in cells expressing the Cre recombinase under the human glial fibrillary acidic protein promoter, active in mouse radial glial cells (RGCs) and in neural stem cells (NSCs) that reside in adult neurogenic niches. In this model we observed that survival of central NSC population does not appear to be severely affected by MCI dysfunction. However, perinatal brain development was markedly inhibited and Ndufs2 knockout mice died before the tenth postnatal day. In addition, in vitro studies of subventricular zone NSCs showed that active neural progenitors require a functional MCI to produce ATP and to proliferate. In vitro differentiation of neural precursors into neurons and oligodendrocytes was also profoundly affected. These data indicate the need of a correct MCI function and oxidative phosphorylation for glia-like NSC proliferation, differentiation and subsequent oligodendrocyte or neuronal maturation.

10.
Science ; 357(6358): 1412-1416, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28912134

RESUMEN

Topoisomerase 2 (TOP2) DNA transactions proceed via formation of the TOP2 cleavage complex (TOP2cc), a covalent enzyme-DNA reaction intermediate that is vulnerable to trapping by potent anticancer TOP2 drugs. How genotoxic TOP2 DNA-protein cross-links are resolved is unclear. We found that the SUMO (small ubiquitin-related modifier) ligase ZATT (ZNF451) is a multifunctional DNA repair factor that controls cellular responses to TOP2 damage. ZATT binding to TOP2cc facilitates a proteasome-independent tyrosyl-DNA phosphodiesterase 2 (TDP2) hydrolase activity on stalled TOP2cc. The ZATT SUMO ligase activity further promotes TDP2 interactions with SUMOylated TOP2, regulating efficient TDP2 recruitment through a "split-SIM" SUMO2 engagement platform. These findings uncover a ZATT-TDP2-catalyzed and SUMO2-modulated pathway for direct resolution of TOP2cc.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Aminoaciltransferasas , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Dominio Catalítico , ADN/genética , ADN/metabolismo , ADN-Topoisomerasas de Tipo II/genética , Proteínas de Unión al ADN , Etopósido/farmacología , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Inmunoprecipitación , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Proteínas Nucleares/genética , Hidrolasas Diéster Fosfóricas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Inhibidores de Topoisomerasa II/farmacología , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
11.
J Neurosci ; 25(28): 6631-40, 2005 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-16014724

RESUMEN

We studied the participation of adrenal medulla (AM) chromaffin cells in hypercapnic chemotransduction. Using amperometric recordings, we measured catecholamine (CAT) secretion from cells in AM slices of neonatal and adult rats perfused with solutions bubbled with different concentrations of CO2. The secretory activity augmented from 1.74 +/- 0.19 pC/min at 5% CO2 to 6.36 +/- 0.77 pC/min at 10% CO2. This response to CO2 was dose dependent and appeared without changes in extracellular pH, although it was paralleled by a drop in intracellular pH. Responsiveness to hypercapnia was higher in neonatal than in adult slices. The secretory response to hypercapnia required extracellular Ca2+ influx. Both the CO2-induced internal pH drop and increase in CAT secretion were markedly diminished by methazolamide (2 microm), a membrane-permeant carbonic anhydrase (CA) inhibitor. We detected the presence of two CA isoforms (CAI and CAII) in neonatal AM slices by in situ hybridization and real-time PCR. The expression of these enzymes decreased in adult AM together with the disappearance of responsiveness to CO2. In patch-clamped chromaffin cells, hypercapnia elicited a depolarizing receptor potential, which led to action potential firing, extracellular Ca2+ influx, and CAT secretion. This receptor potential (inhibited by methazolamide) was primarily attributable to activation of a resting cationic conductance. In addition, voltage-gated K+ current amplitude was also decreased by high CO2. The CO2-sensing properties of chromaffin cells may be of physiologic relevance, particularly for the adaptation of neonates to extrauterine life, before complete maturation of peripheral and central chemoreceptors.


Asunto(s)
Médula Suprarrenal/fisiología , Dióxido de Carbono/análisis , Anhidrasas Carbónicas/genética , Células Cromafines/fisiología , Hipercapnia/fisiopatología , Animales , Animales Recién Nacidos , Calcio/metabolismo , Calcio/farmacología , Dióxido de Carbono/administración & dosificación , Dióxido de Carbono/farmacología , Anhidrasas Carbónicas/biosíntesis , Catecolaminas/metabolismo , Células Cromafines/efectos de los fármacos , Células Cromafines/metabolismo , Relación Dosis-Respuesta a Droga , Inducción Enzimática , Líquido Extracelular/metabolismo , Concentración de Iones de Hidrógeno , Líquido Intracelular/metabolismo , Transporte Iónico , Isoenzimas/biosíntesis , Isoenzimas/genética , Metazolamida/farmacología , Técnicas de Placa-Clamp , Reacción en Cadena de la Polimerasa , Potasio/metabolismo , Potasio/farmacología , Ratas , Ratas Wistar , Sodio/metabolismo , Sodio/farmacología , Tetrodotoxina/farmacología
12.
Cell Stem Cell ; 10(1): 33-46, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22226354

RESUMEN

The Polycomb Group (PcG) of chromatin modifiers regulates pluripotency and differentiation. Mammalian genomes encode multiple homologs of the Polycomb repressive complex 1 (PRC1) components, including five orthologs of the Drosophila Polycomb protein (Cbx2, Cbx4, Cbx6, Cbx7, and Cbx8). We have identified Cbx7 as the primary Polycomb ortholog of PRC1 complexes in embryonic stem cells (ESCs). The expression of Cbx7 is downregulated during ESC differentiation, preceding the upregulation of Cbx2, Cbx4, and Cbx8, which are directly repressed by Cbx7. Ectopic expression of Cbx7 inhibits differentiation and X chromosome inactivation and enhances ESC self-renewal. Conversely, Cbx7 knockdown induces differentiation and derepresses lineage-specific markers. In a functional screen, we identified the miR-125 and miR-181 families as regulators of Cbx7 that are induced during ESC differentiation. Ectopic expression of these miRNAs accelerates ESC differentiation via regulation of Cbx7. These observations establish a critical role for Cbx7 and its regulatory miRNAs in determining pluripotency.


Asunto(s)
Diferenciación Celular/fisiología , Regulación hacia Abajo/fisiología , Células Madre Embrionarias/metabolismo , MicroARNs/metabolismo , Proteínas Represoras/biosíntesis , Proteínas Represoras/metabolismo , Animales , Antígenos de Diferenciación/biosíntesis , Antígenos de Diferenciación/genética , Línea Celular Tumoral , Cromosomas Humanos X/genética , Cromosomas Humanos X/metabolismo , Células Madre Embrionarias/citología , Humanos , Ligasas , Ratones , MicroARNs/genética , Proteínas de Transporte de Membrana Mitocondrial , Complejo Represivo Polycomb 1 , Proteínas del Grupo Polycomb , Proteínas Represoras/genética , Ubiquitina-Proteína Ligasas , Inactivación del Cromosoma X/fisiología
13.
J Biol Chem ; 282(41): 30207-15, 2007 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-17673462

RESUMEN

O(2) is essential for aerobic life, and the classic view is that it diffuses freely across the plasma membrane. However, measurements of O(2) permeability of lipid bilayers have indicated that it is much lower than previously thought, and therefore, the existence of membrane O(2) channels has been suggested. We hypothesized that, besides its role as a water channel, aquaporin-1 (AQP-1) could also work as an O(2) transporter, because this transmembrane protein appears to be CO(2)-permeable and is highly expressed in cells with rapid O(2) turnover (erythrocytes and microvessel endothelium). Here we show that in mammalian cells overexpressing AQP-1 and exposed to hypoxia, the loss of cytosolic O(2), as well as stabilization of the O(2)-dependent hypoxia-inducible transcription factor and expression of its target genes, is accelerated. In normoxic endothelial cells, knocking down AQP-1 produces induction of hypoxia-inducible genes. Moreover, lung AQP-1 is markedly up-regulated in animals exposed to hypoxia. These data suggest that AQP-1 has O(2) permeability and thus could facilitate O(2) diffusion across the cell membrane.


Asunto(s)
Acuaporina 1/biosíntesis , Citosol/metabolismo , Regulación de la Expresión Génica , Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia , Regulación hacia Arriba , Animales , Acuaporina 1/química , Dióxido de Carbono/química , Membrana Celular/metabolismo , Pulmón/metabolismo , Microscopía Confocal , Modelos Biológicos , Nitroimidazoles/farmacología , Oxígeno/metabolismo , Células PC12 , Permeabilidad , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA