RESUMEN
OBJECTIVES: Immune checkpoint inhibitors (ICIs) cause a variety of toxicities, including immune-related adverse events (irAEs), but there are no biomarkers to predict their development. Guidelines recommend measuring circulating cardiac troponin I (cTnI) during ICI therapy to detect related cardiotoxicities. Moreover, elevated cTnI has also been associated with worse outcomes in non-cardiac patients, including cancer. Thus here, we investigated whether cTnI levels were higher in patients with irAEs. METHODS: The study consisted of three groups; 21 cancer patients undergoing ICI immunotherapies who presented with irAEs, four patients without irAEs, and 20 healthy controls. Patient samples were assessed at baseline (n=25), during ICI treatment (n=25, median=6 weeks of treatment) and at toxicity (n=6, median=13 weeks of treatment). In addition to blood high sensitivity cardiac troponin I (hs-cTnI), anti-thyroglobulin (TG) and anti-thyroid peroxidase (TPO) antibodies were also quantitated to detect thyroid dysfunction, constituting the second leading toxicity (23.8%) after pneumonitis (28.6%). RESULTS: Four patients with irAEs (n=4/21; 19%) and one without irAEs (n=1/4; 25%) showed higher hs-cTnI levels at any time-point; the remaining had physiological levels. None of these patients developed cardiotoxicity. Concurrent elevated levels of anti-thyroid antibodies and hs-cTnI were detected in one patient with thyroid dysfunction (n=1/5, 20%). However, these antibodies were also elevated in three patients (n=3/16, 19%) with non-thyroid irAEs and in up to 40% of healthy controls. CONCLUSIONS: hs-cTnI was not elevated in patients with irAEs, but larger studies are needed to confirm these observations.
Asunto(s)
Antineoplásicos Inmunológicos , Inhibidores de Puntos de Control Inmunológico , Neoplasias , Humanos , Antineoplásicos Inmunológicos/efectos adversos , Cardiotoxicidad , Estudios de Casos y Controles , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Neoplasias/tratamiento farmacológico , Neoplasias/complicaciones , Estudios Retrospectivos , Enfermedades de la Tiroides , Troponina IRESUMEN
Immune checkpoint inhibitors (ICI) are increasingly used in combination. To understand the effects of different ICI categories, we characterized changes in circulating autoantibodies in patients enrolled in the E4412 trial (NCT01896999) of brentuximab vedotin (BV) plus ipilimumab, BV plus nivolumab, or BV plus ipilimumab-nivolumab for Hodgkin Lymphoma. Cycle 2 Day 1 (C2D1) autoantibody levels were compared to pre-treatment baseline. Across 112 autoantibodies tested, we generally observed increases in ipilimumab-containing regimens, with decreases noted in the nivolumab arm. Among 15 autoantibodies with significant changes at C2D1, all nivolumab cases exhibited decreases, with more than 90% of ipilimumab-exposed cases showing increases. Autoantibody profiles also showed differences according to immune-related adverse event (irAE) type, with rash generally featuring increases and liver toxicity demonstrating decreases. We conclude that dynamic autoantibody profiles may differ according to ICI category and irAE type. These findings may have relevance to clinical monitoring and irAE treatment.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Autoanticuerpos , Brentuximab Vedotina , Inhibidores de Puntos de Control Inmunológico , Ipilimumab , Nivolumab , Humanos , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Nivolumab/efectos adversos , Nivolumab/administración & dosificación , Ipilimumab/efectos adversos , Ipilimumab/administración & dosificación , Brentuximab Vedotina/uso terapéutico , Femenino , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Enfermedad de Hodgkin/tratamiento farmacológico , Enfermedad de Hodgkin/inmunología , Masculino , Persona de Mediana Edad , Adulto , AncianoRESUMEN
Introduction: Racial and ethnic disparities in the presentation and outcomes of lung cancer are widely known. To evaluate potential factors contributing to these observations, we measured systemic immune parameters in Black and White patients with lung cancer. Methods: Patients scheduled to receive cancer immunotherapy were enrolled in a multi-institutional prospective biospecimen collection registry. Clinical and demographic information were obtained from electronic medical records. Pre-treatment peripheral blood samples were collected and analyzed for cytokines using a multiplex panel and for immune cell populations using mass cytometry. Differences between Black and White patients were determined and corrected for multiple comparisons. Results: A total of 187 patients with non-small cell lung cancer (Black, 19; White, 168) were included in the analysis. There were no significant differences in baseline characteristics between Black and White patients. Compared to White patients, Black patients had significantly lower levels of CCL23 and CCL27, and significantly higher levels of CCL8, CXCL1, CCL26, CCL25, CCL1, IL-1 b, CXCL16, and IFN-γ (all P <0.05, FDR<0.1). Black patients also exhibited greater populations of non-classical CD16+ monocytes, NKT-like cells, CD4+ cells, CD38+ monocytes, and CD57+ gamma delta T cells (all P <0.05). Conclusions: Black and White patients with lung cancer exhibit several differences in immune parameters, with Black patients exhibiting greater levels of numerous pro-inflammatory cytokines and cell populations. The etiology and clinical significance of these differences warrant further evaluation.
RESUMEN
Immunotherapy with T-cells expressing bispecific T-cell engagers (ENG T-cells) is a promising approach to improve the outcomes for patients with recurrent/refractory acute myeloid leukemia (AML). However, similar to T-cells expressing chimeric antigen receptors (CARs), their antitumor activity is limited in the setting of chronic antigen stimulation. We therefore set out to explore whether transgenic expression of IL15 improves the effector function of ENG T-cells targeting CD123-positive AML. T-cells expressing CD123-specific ENG (CD123-ENG) ± IL15 were generated by retroviral transduction from peripheral blood T cells from healthy donors or patients with AML. In this study, we characterized in detail the phenotype and effector functions of ENG T-cell populations in vitro and in vivo. IL15-expressing CD123-ENG (CD123-ENG.IL15) T-cells retained their antigen-specificity and effector function in the setting of chronic antigen exposure for more 30 days of coculture with AML blasts in contrast to CD123-ENG T-cells, whose effector function rapidly eroded. Furthermore, CD123-ENG.IL15 T-cells remained in a less differentiated state as judged by a high frequency of naïve/memory stem T-cell-like cells (CD45RA+CCR7+/CD45RO-CD62L+ cells) without evidence of T-cell exhaustion. Single cell cytokine profiling using IsoPlexis revealed enhanced T-cell polyfunctionality of CD123-ENG.IL15 T-cells as judged by effector cytokine production, including, granzyme B, IFN-γ, MIP-1α, perforin, TNF-α, and TNF-ß. In vivo, CD123-ENG.IL15 T-cells exhibited superior antigen-specific anti-AML activity and T-cell persistence in both peripheral blood and tissues (BM, spleens, and livers), resulting in a significant survival advantage in one AML xenograft model and two autologous AML PDX models. In conclusion, we demonstrate here that the expansion, persistence, and anti-AML activity of CD123-ENG T-cells can be significantly improved by transgenic expression of IL15, which promotes a naïve/TSCM-like phenotype. However, we also highlight that targeting a single tumor antigen (CD123) can lead to immune escape, reinforcing the need to develop approaches to target multiple antigens. Likewise, our study demonstrates that it is feasible to evaluate autologous T cells in AML PDX models, which will be critical for future preclinical evaluations of next generation AML-redirected T-cell therapies.
Asunto(s)
Interleucina-15 , Subunidad alfa del Receptor de Interleucina-3 , Leucemia Mieloide Aguda , Animales , Animales Modificados Genéticamente , Diferenciación Celular/genética , Línea Celular Tumoral , Humanos , Inmunoterapia Adoptiva/métodos , Interleucina-15/genética , Interleucina-15/metabolismo , Subunidad alfa del Receptor de Interleucina-3/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Linfocitos T/metabolismoRESUMEN
Immune-related adverse events (irAE) may affect almost any organ system and occur at any point during treatment with immune checkpoint inhibitors (ICI). We present a patient with advanced lung cancer receiving antiprogrammed death 1 checkpoint inhibitor who developed a delayed-onset visual irAE treated with corticosteroids. Through assessment of longitudinal biospecimens, we analyzed serial autoantibodies, cytokines, and cellular populations. Months after ICI initiation and preceding clinical toxicity, the patient developed broad increases in cytokines (most notably interleukin-6 (IL-6), interferon-γ (IFNγ), C-X-C motif chemokine ligand 2 (CXCL2), and C-C motif chemokine ligand 17 (CCL17)), autoantibodies (including anti-angiotensin receptor, α-actin, and amyloid), CD8 T cells, and plasmablasts. Such changes were not observed in healthy controls and ICI-treated patients without irAE. Administration of corticosteroids resulted in immediate and profound decreases in cytokines, autoantibodies, and inflammatory cells. This case highlights the potential for late-onset changes in humoral and cellular immunity in patients receiving ICI. It also demonstrates the biologic effects of corticosteroids on these parameters. Application of humoral and cellular immune biomarkers across ICI populations may inform toxicity monitoring and management.