Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Soft Matter ; 16(37): 8547-8553, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32909579

RESUMEN

The time-resolved dynamic assembly and the structures of protein liquid dense clusters (LDCs) were analyzed under pulsed electric fields (EFs) applying complementary polarized and depolarized dynamic light scattering (DLS/DDLS), optical microscopy, and transmission electron microscopy (TEM). We discovered that pulsed EFs substantially affected overall morphologies and spatial distributions of protein LDCs and microcrystals, and affected the phase diagrams of LDC formation, including enabling protein solutions to overcome the diffusive flux energy barrier to phase separate. Data obtained from DLS/DDLS and TEM showed that LDCs appeared as precursors of protein crystal nuclei, followed by the formation of ordered structures within LDCs applying a pulsed EF. Experimental results of circular dichroism spectroscopy provided evidence that the protein secondary structure content is changing under EFs, which may consequently modulate protein-protein interactions, and the morphology, dimensions, and internal structure of LDCs. Data and results obtained unveil options to modulate the phase diagram of crystallization, and physical morphologies of protein LDCs and microcrystals by irradiating sample suspensions with pulsed EFs.


Asunto(s)
Proteínas , Cristalización , Dispersión Dinámica de Luz , Microscopía Electrónica de Transmisión , Estructura Secundaria de Proteína
2.
Int J Mol Sci ; 21(17)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825141

RESUMEN

Plasmodium species are protozoan parasites causing the deadly malaria disease. They have developed effective resistance mechanisms against most antimalarial medication, causing an urgent need to identify new antimalarial drug targets. Ideally, new drugs would be generated to specifically target the parasite with minimal or no toxicity to humans, requiring these drug targets to be distinctly different from the host's metabolic processes or even absent in the host. In this context, the essential presence of vitamin B6 biosynthesis enzymes in Plasmodium, the pyridoxal phosphate (PLP) biosynthesis enzyme complex, and its absence in humans is recognized as a potential drug target. To characterize the PLP enzyme complex in terms of initial drug discovery investigations, we performed structural analysis of the Plasmodium vivax PLP synthase domain (Pdx1), glutaminase domain (Pdx2), and Pdx1-Pdx2 (Pdx) complex (PLP synthase complex) by utilizing complementary bioanalytical techniques, such as dynamic light scattering (DLS), X-ray solution scattering (SAXS), and electron microscopy (EM). Our investigations revealed a dodecameric Pdx1 and a monodispersed Pdx complex. Pdx2 was identified in monomeric and in different oligomeric states in solution. Interestingly, mixing oligomeric and polydisperse Pdx2 with dodecameric monodisperse Pdx1 resulted in a monodispersed Pdx complex. SAXS measurements revealed the low-resolution dodecameric structure of Pdx1, different oligomeric structures for Pdx2, and a ring-shaped dodecameric Pdx1 decorated with Pdx2, forming a heteromeric 24-meric Pdx complex.


Asunto(s)
Glutaminasa/química , Simulación de Dinámica Molecular , Plasmodium vivax/enzimología , Multimerización de Proteína , Proteínas Protozoarias/química , Sitios de Unión , Glutaminasa/metabolismo , Unión Proteica , Proteínas Protozoarias/metabolismo , Fosfato de Piridoxal/biosíntesis , Vitamina B 6/biosíntesis
3.
J Mycol Med ; 33(4): 101428, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37651769

RESUMEN

INTRODUCTION: Here we tested the correlation between minimum inhibitory concentrations (MICs) of major antifungal agents and sequence types (STs) within Cryptococcus neoformans VNI isolates, and explored the ERG11 gene of included strains. MATERIALS AND METHODS: We analysed 23 C. neoformans strains categorised into two groups according to the distribution of the ST profile in Kinshasa clinics (Democratic Republic of Congo): major ST [ST93 (n = 15)], and less common STs [ST659 (n = 2), ST5 (n = 2), ST4 (n = 1), ST 53 (n = 1), ST31 (n = 1), and ST69 (n = 1)]. The MICs of the major antifungal agents [amphotericin B (AMB), 5-fluorocytosine (5FC) and fluconazole (FCZ)] were determined following EUCAST guidelines. ERG11 gene sequences were extracted from whole genome sequence of the isolates and compared with the wild-type gene sequence of the C. neoformans VNI. RESULTS: Although major ST isolates appeared to have lower median MICs for AMB and 5FU than less common ST isolates (0.50 vs. 0.75 mg/L for AMB, 2 vs. 4 mg/L for 5FU, respectively), FCZ susceptibility was similar in both groups (4 mg/L) (p-value >0.05). The susceptibility profile of C. neoformans strains separately considered did not significantly affect the patients' clinical outcomes (p-value >0.05). Furthermore, two structural modalities of the ERG11 gene were observed: (1) that of the reference gene, and (2) that containing two exonic silent point substitutions, and one intronic point substitution located in a sequence potentially involved in pre-mRNA splicing (c.337-22C > T); with no association with the MICs of the isolates (p-value >0.05). CONCLUSIONS: The lack of association/correlation found in this study calls for further investigations to better understand the mechanisms of C. neoformans resistance to antifungal agents.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Infecciones por VIH , Humanos , Antifúngicos/farmacología , República Democrática del Congo , Fluconazol/farmacología , Criptococosis/microbiología , Anfotericina B/farmacología , Flucitosina/farmacología , Pruebas de Sensibilidad Microbiana , Polimorfismo Genético , Fluorouracilo , Farmacorresistencia Fúngica/genética
4.
Commun Biol ; 3(1): 569, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33051587

RESUMEN

There is an increasing demand for rapid, effective methods to identify and detect protein micro- and nano-crystal suspensions for serial diffraction data collection at X-ray free-electron lasers or high-intensity micro-focus synchrotron radiation sources. Here, we demonstrate a compact multimodal, multiphoton microscope, driven by a fiber-based ultrafast laser, enabling excitation wavelengths at 775 nm and 1300 nm for nonlinear optical imaging, which simultaneously records second-harmonic generation, third-harmonic generation and three-photon excited ultraviolet fluorescence to identify and detect protein crystals with high sensitivity. The instrument serves as a valuable and important tool supporting sample scoring and sample optimization in biomolecular crystallography, which we hope will increase the capabilities and productivity of serial diffraction data collection in the future.


Asunto(s)
Cristales Líquidos , Microscopía de Fluorescencia por Excitación Multifotónica , Modelos Moleculares , Proteínas/química , Cristalización/métodos , Dispositivos Laboratorio en un Chip , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Conformación Proteica , Reproducibilidad de los Resultados , Relación Estructura-Actividad
5.
Acta Trop ; 188: 34-40, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30153427

RESUMEN

Trypanosoma brucei, a flagellated protozoan causing the deadly tropical disease Human African Trypanosomiasis (HAT), affects people in sub-Saharan Africa. HAT therapy relies upon drugs which use is limited by toxicity and rigorous treatment regimes, while development of vaccines remains elusive, due to the effectiveness of the parasite´s antigenic variation. Here, we evaluate a hypothetical protein Tb427.10.13790, as a potential drug target. This protein is conserved among all kinetoplastids, but lacks homologs in all other pro- and eukaryotes. Knockdown of Tb427.10.13790 resulted in appearance of monster cells containing multiple nuclei and multiple flagella, a considerable enlargement of the flagellar pocket and eventually a lethal phenotype. Furthermore, analysis of kinetoplast and nucleus division in the knockdown cell line revealed a partial cell cycle arrest and failure to initiate cytokinesis. Likewise, overexpression of the respective protein fused with enhanced green fluorescent protein was also lethal for T. brucei. In these cells, the labelled protein appeared as a single dot near kinetoplast and flagellar pocket. Our results reveal that Tb427.10.13790 is essential for the parasite´s viability and may be a suitable new anti-trypanosomatid drug target candidate. Furthermore, we suggest that it might be worthwhile to investigate also other of the many so far just annotated trypanosome genes as a considerable number of them to lack human homologs but may be of critical importance for the kinetoplastid parasites.


Asunto(s)
Citocinesis , Proteínas Protozoarias/fisiología , Trypanosoma brucei brucei/citología , Animales
6.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 8): 929-37, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26249677

RESUMEN

During the last decade, the number of three-dimensional structures solved by X-ray crystallography has increased dramatically. By 2014, it had crossed the landmark of 100 000 biomolecular structures deposited in the Protein Data Bank. This tremendous increase in successfully crystallized proteins is primarily owing to improvements in cloning strategies, the automation of the crystallization process and new innovative approaches to monitor crystallization. However, these improvements are mainly restricted to soluble proteins, while the crystallization and structural analysis of membrane proteins or proteins that undergo major post-translational modifications remains challenging. In addition, the need for relatively large crystals for conventional X-ray crystallography usually prevents the analysis of dynamic processes within cells. Thus, the advent of high-brilliance synchrotron and X-ray free-electron laser (XFEL) sources and the establishment of serial crystallography (SFX) have opened new avenues in structural analysis using crystals that were formerly unusable. The successful structure elucidation of cathepsin B, accomplished by the use of microcrystals obtained by in vivo crystallization in baculovirus-infected Sf9 insect cells, clearly proved that crystals grown intracellularly are very well suited for X-ray analysis. Here, methods by which in vivo crystals can be obtained, isolated and used for structural analysis by novel highly brilliant XFEL and synchrotron-radiation sources are summarized and discussed.


Asunto(s)
Catepsina B/química , Cristalografía/métodos , Procesamiento Proteico-Postraduccional , Animales , Células CHO , Catepsina B/genética , Catepsina B/metabolismo , Cricetulus , Cristalización , Cristalografía/instrumentación , Electrones , Escherichia coli , Expresión Génica , Células HEK293 , Humanos , Rayos Láser , Saccharomyces cerevisiae , Células Sf9 , Spodoptera , Sincrotrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA