Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioconjug Chem ; 33(7): 1363-1376, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35793523

RESUMEN

Many low-molecular weight targeted radiotherapeutics (TRTs) are capable of rapidly achieving exceptional tumor to non-target ratios shortly after administration. However, the low tumor residence time of many TRTs limits therapeutic dose delivery and has become the Achilles heel to their clinical translation. To combat the tumor efflux of these otherwise promising agents, we have previously presented a strategy of equipping low-molecular weight TRTs with irreversible cysteine cathepsin inhibitors (e.g., E-64 analogues). These inhibitors are capable of forming irreversible adducts with cysteine proteases within the endolysosomal compartments of cells. Using these endolysosomal trapping agents (ETs), the receptor-targeted constructs are able to increase tumor retention and, thus, deliverable therapeutic doses. In this study, we examine this approach in the development of agents targeting the neurotensin receptor subtype 1 (NTSR1), a receptor overexpressed in numerous cancers. Using an antagonistic NTSR1-targeting vector, we explore the impact of charge modification of the ETs on the in vitro and in vivo biological performance of the constructs using HT-29 colon cancer models. Four ETs (based on the epoxysuccinyl peptide E-64) with various charge states were synthesized and incorporated into the structures of the NTSR1-targeted antagonist. These four 177Lu-labeled, ET-enhanced, NTSR1-targeted agents (177Lu-NA-ET1-4), along with the structurally analogous 177Lu-3BP-227, currently in clinical trials, underwent a battery of in vitro assays using HT-29 xenograft colon cancer cells to examine their NTSR1 binding, internalization and efflux, inhibition, and adduct formation properties. The biodistribution profile of these constructs was studied in an HT-29 mouse model. Charge modification of the terminal carboxylic acid and arginine of the ETs had deleterious effects on inhibition kinetics and in vitro adduct formation. Contrastingly, deletion of the arginine resulted in a modest increase in inhibition kinetics. Incorporation of ETs into the NTSR1-targeted agents was well-tolerated with minimal impact on the in vivo NTSR1 targeting but resulted in increased renal uptake. This study demonstrates that the ETs can be successfully incorporated into antagonistic NTSR1-targeted constructs without compromising their adduct formation capabilities. Based on these results, further exploration of the endolysosomal trapping approach is warranted in NTSR1- and other receptor-targeted antagonistic constructs.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Arginina/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Células HT29 , Humanos , Ratones , Receptores de Neurotensina/metabolismo , Distribución Tisular
2.
Mol Pharm ; 19(10): 3586-3599, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-35640060

RESUMEN

Surgery remains the only potentially curative treatment option for pancreatic cancer, but resections are made more difficult by infiltrative disease, proximity of critical vasculature, peritumoral inflammation, and dense stroma. Surgeons are limited to tactile and visual cues to differentiate cancerous tissue from normal tissue. Furthermore, translating preoperative images to the intraoperative setting poses additional challenges for tumor detection, and can result in undetected and unresected lesions. Thus, pancreatic ductal adenocarcinoma (PDAC) has high rates of incomplete resections, and subsequently, disease recurrence. Fluorescence-guided surgery (FGS) has emerged as a method to improve intraoperative detection of cancer and ultimately improve surgical outcomes. Initial clinical trials have demonstrated feasibility of FGS for PDAC, but there are limited targeted probes under investigation for this disease, highlighting the need for development of additional novel biomarkers to reflect the PDAC heterogeneity. MUCIN16 (MUC16) is a glycoprotein that is overexpressed in 60-80% of PDAC. In our previous work, we developed a MUC16-targeted murine antibody near-infrared conjugate, termed AR9.6-IRDye800, that showed efficacy in detecting pancreatic cancer. To build on the translational potential of this imaging probe, a humanized variant of the AR9.6 fluorescent conjugate was developed and investigated herein. This conjugate, termed huAR9.6-IRDye800, showed equivalent binding properties to its murine counterpart. Using an optimized dye:protein ratio of 1:1, in vivo studies demonstrated high tumor to background ratios in MUC16-expressing tumor models, and delineation of tumors in a patient-derived xenograft model. Safety, biodistribution, and toxicity studies were conducted. These studies demonstrated that huAR9.6-IRDye800 was safe, did not yield evidence of histological toxicity, and was well tolerated in vivo. The results from this work suggest that AR9.6-IRDye800 is an efficacious and safe imaging agent for identifying pancreatic cancer intraoperatively through fluorescence-guided surgery.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Antígeno Ca-125/metabolismo , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/cirugía , Línea Celular Tumoral , Colorantes Fluorescentes/química , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Recurrencia Local de Neoplasia , Imagen Óptica/métodos , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/cirugía , Distribución Tisular , Neoplasias Pancreáticas
3.
Cancer Lett ; 561: 216150, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36997106

RESUMEN

Pancreatic cancer is difficult to resect due to its unique challenges, often leading to incomplete tumor resections. Fluorescence-guided surgery (FGS), also known as intraoperative molecular imaging and optical surgical navigation, is an intraoperative tool that can aid surgeons in complete tumor resection through an increased ability to detect the tumor. To target the tumor, FGS contrast agents rely on biomarkers aberrantly expressed in malignant tissue compared to normal tissue. These biomarkers allow clinicians to identify the tumor and its stage before surgical resection and provide a contrast agent target for intraoperative imaging. Mucins, a family of glycoproteins, are upregulated in malignant tissue compared to normal tissue. Therefore, these proteins may serve as biomarkers for surgical resection. Intraoperative imaging of mucin expression in pancreatic cancer can potentially increase the number of complete resections. While some mucins have been studied for FGS, the potential ability to function as a biomarker target extends to the entire mucin family. Therefore, mucins are attractive proteins to investigate more broadly as FGS biomarkers. This review summarizes the biomarker traits of mucins and their potential use in FGS for pancreatic cancer.


Asunto(s)
Neoplasias Pancreáticas , Cirugía Asistida por Computador , Humanos , Medios de Contraste , Fluorescencia , Mucinas , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/cirugía , Cirugía Asistida por Computador/métodos , Proteínas , Imagen Óptica/métodos , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA