Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nat Mater ; 9(10): 859-64, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20835231

RESUMEN

The development of an electronic skin is critical to the realization of artificial intelligence that comes into direct contact with humans, and to biomedical applications such as prosthetic skin. To mimic the tactile sensing properties of natural skin, large arrays of pixel pressure sensors on a flexible and stretchable substrate are required. We demonstrate flexible, capacitive pressure sensors with unprecedented sensitivity and very short response times that can be inexpensively fabricated over large areas by microstructuring of thin films of the biocompatible elastomer polydimethylsiloxane. The pressure sensitivity of the microstructured films far surpassed that exhibited by unstructured elastomeric films of similar thickness, and is tunable by using different microstructures. The microstructured films were integrated into organic field-effect transistors as the dielectric layer, forming a new type of active sensor device with similarly excellent sensitivity and response times.

2.
ACS Appl Mater Interfaces ; 7(9): 5045-50, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25646647

RESUMEN

Here we demonstrate the optimization of gravure printed metal ink, dielectric, and semiconductor formulations. We present a technique for nondestructively imaging printed films using a commercially available flatbed scanner, combined with image analysis to quantify print behavior. Print speed, cliché screen density, nip pressure, the orientation of print structures, and doctor blade extension were found to have a significant impact on the quality of printed films, as characterized by the spreading of printed structures and variation in print homogeneity. Organic semiconductor prints were observed to exhibit multiple periodic modulations, which are correlated to the underlying cell structure.

3.
ACS Appl Mater Interfaces ; 6(2): 958-66, 2014 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-24364560

RESUMEN

The performance of medical implants and devices is dependent on the biocompatibility of the interfacial region between tissue and the implant material. Polymeric hydrogels are attractive materials for use as biocompatible surface coatings for metal implants. In such systems, a factor that is critically important for the longevity of an implant is the formation of a robust bond between the hydrogel layer and the implant metal surface and the ability for this assembly to withstand physiological conditions. Here, we describe the grafting of cross-linked hydrogel networks to titanium surfaces using grit-blasting and subsequent chemical functionalization using a silane-based adhesion promoter. Metal surface characterization was carried out using profilometry, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) analysis. Hydrogel layers composed of poly(ethylene glycol)-dimethacrylate (PEG-DMA), poly(2-hydroxyethylmethacrylate) (PHEMA), or poly(ethylene glycol)/poly(acrylic acid) (PEG/PAA) semi-interpenetrating polymer networks (semi-IPNs) have been prepared. The mechanical properties of these hydrogel-metal assemblies have been characterized using lap-shear measurements, and the surface morphology was studied by SEM and EDX. We have shown that both high surface roughness and chemical functionalization are critical for adhesion of the hydrogel layer to the titanium substrate.


Asunto(s)
Materiales Biocompatibles/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Titanio/química , Resinas Acrílicas/química , Humanos , Metacrilatos/química , Polihidroxietil Metacrilato/química , Prótesis e Implantes , Espectrometría por Rayos X , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA