Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Biol Chem ; 295(52): 18091-18104, 2020 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-33087445

RESUMEN

Akt3 regulates mitochondrial content in endothelial cells through the inhibition of PGC-1α nuclear localization and is also required for angiogenesis. However, whether there is a direct link between mitochondrial function and angiogenesis is unknown. Here we show that Akt3 depletion in primary endothelial cells results in decreased uncoupled oxygen consumption, increased fission, decreased membrane potential, and increased expression of the mitochondria-specific protein chaperones, HSP60 and HSP10, suggesting that Akt3 is required for mitochondrial homeostasis. Direct inhibition of mitochondrial homeostasis by the model oxidant paraquat results in decreased angiogenesis, showing a direct link between angiogenesis and mitochondrial function. Next, in exploring functional links to PGC-1α, the master regulator of mitochondrial biogenesis, we searched for compounds that induce this process. We found that, sildenafil, a phosphodiesterase 5 inhibitor, induced mitochondrial biogenesis as measured by increased uncoupled oxygen consumption, mitochondrial DNA content, and voltage-dependent anion channel protein expression. Sildenafil rescued the effects on mitochondria by Akt3 depletion or pharmacological inhibition and promoted angiogenesis, further supporting that mitochondrial homeostasis is required for angiogenesis. Sildenafil also induces the expression of PGC-1 family member PRC and can compensate for PGC-1α activity during mitochondrial stress by an Akt3-independent mechanism. The induction of PRC by sildenafil depends upon cAMP and the transcription factor CREB. Thus, PRC can functionally substitute during Akt3 depletion for absent PGC-1α activity to restore mitochondrial homeostasis and promote angiogenesis. These findings show that mitochondrial homeostasis as controlled by the PGC family of transcriptional activators is required for angiogenic responses.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/química , Endotelio Vascular/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Inhibidores de Fosfodiesterasa 5/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Núcleo Celular/efectos de los fármacos , Regulación de la Expresión Génica , Humanos , Mitocondrias/patología , Biogénesis de Organelos , Consumo de Oxígeno , Factores de Transcripción/genética
2.
BMC Geriatr ; 21(1): 118, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568107

RESUMEN

BACKGROUND: Chronic venous leg ulcers (CVLUs) are the most common type of lower extremity wound. Even when treated with evidenced-based care, 30-50% of CVLUs fail to heal. A specific gap exists about the association between psychosocial stressors, particularly loneliness, and biomarkers of inflammation and immunity. Loneliness is highly prevalent in persons with CVLUs, has damaging effects on health, and contributes to the development of multiple chronic conditions, promotes aberrant inflammation, and diminishes healing. However, the confluence of loneliness, inflammation and the wound healing trajectory has not been elucidated; specifically whether loneliness substantially mediates systemic inflammation and alters healing over time. This study seeks to address whether there is a specific biomarker profile associated with loneliness, CVLUs, and wound healing that is different from non-lonely persons with CVLUs. METHODS: An observational prospective study will identify, characterize and explore associations among psychosocial stressors, symptoms and biomarkers between 2 CVLU groups, with loneliness+ (n = 28) and without loneliness- (n = 28) during 4 weeks of wound treatment, measured at 3 time points. We will examine psychosocial stressors and symptoms using psychometrically-sound measures include PROMIS® and other questionnaires for loneliness, social isolation, depression, anxiety, stigma, sleep, fatigue, pain, quality of life, cognition, and function. Demographics data including health history, sex, age, wound type and size, wound age, and treatment will be recorded from the electronic health record. We will characterize a biomarker panel of inflammatory genes including chemotaxic and growth factors, vascular damage, and immune regulators that express in response to loneliness to loneliness and CVLUs using well-established RNA sequence and PCR methods for whole blood samples. In an exploratory aim we will explore whether age and sex/psychological stressors and symptoms indicate potential moderation/mediation of the effect of loneliness on the biomarker profile over the study period. DISCUSSION: This study will provide insight into the influence of psychosocial stressors, symptoms, and biological mechanisms on wound healing, towards advancing a future healing prediction model and interventions to address these stressors and symptoms experienced by persons with CVLUs.


Asunto(s)
Soledad , Úlcera Varicosa , Anciano , Humanos , Inflamación , Estudios Observacionales como Asunto , Estudios Prospectivos , Calidad de Vida
3.
J Mol Cell Cardiol ; 137: 132-142, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31668971

RESUMEN

Specification of the primary heart field in mouse embryos requires signaling from the anterior visceral endoderm (AVE). The nature of these signals is not known. We hypothesized that the TGFß-activated kinase (TAK1/Map3k7) may act as a cardiogenic factor, based on its expression in heart-inducing endoderm and its requirement for cardiac differentiation of p19 cells. To test this, mouse embryonic stem (ES) cells overexpressing Map3k7 were isolated and differentiated as embryoid bodies (EBs). Map3k7-overexpressing EBs showed increased expression of AVE markers but interestingly, showed little effect on mesoderm formation and had no impact on overall cardiomyocyte formation. To test whether the pronounced expansion of endoderm masks an expansion of cardiac lineages, chimeric EBs were made consisting of Map3k7-overexpressing ES and wild type ES cells harboring a cardiac reporter transgene, MHCα::GFP, allowing cardiac differentiation to be assessed specifically in wild type ES cells. Wild type ES cells co-cultured with Map3k7-overexpressing cells had a 4-fold increase in expression of the cardiac reporter, supporting the hypothesis that Map3k7 increases the formation of cardiogenic endoderm. To further examine the role of Map3k7 in early lineage specification, other endodermal markers were examined. Interestingly, markers that are expressed in both the VE and later in gut development were expanded, whereas transcripts that specifically mark the early definitive (streak-derived) endoderm (DE) were not. To determine if Map3k7 is necessary for endoderm differentiation, EBs were grown in the presence of the Map3k7 specific inhibitor 5Z-7-oxozeaenol. Endoderm differentiation was dramatically decreased in these cells. Western blot analysis showed that known downstream targets of Map3k7 (Jnk, Nemo-like kinase (NLK) and p38 MAPK) were all inhibited. By contrast, transcripts for another TGFß target, Sonic Hedgehog (Shh) were markedly upregulated, as were transcripts for Gli2 (but not Gli1 and Gli3). Together these data support the hypothesis that Map3k7 governs the formation, or proliferation of cardiogenic endoderm.


Asunto(s)
Diferenciación Celular , Endodermo/embriología , Endodermo/enzimología , Corazón/embriología , Quinasas Quinasa Quinasa PAM/metabolismo , Células Madre Embrionarias de Ratones/citología , Organogénesis , Animales , Línea Celular , Cuerpos Embrioides/citología , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Sistema de Señalización de MAP Quinasas , Mesodermo/embriología , Ratones , Miocitos Cardíacos/citología , Regulación hacia Arriba/genética , Proteína Gli2 con Dedos de Zinc/metabolismo
4.
BMC Cancer ; 19(1): 491, 2019 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-31122207

RESUMEN

BACKGROUND: Eukaryotic Initiation Factor 4E-Binding Protein (EIF4EBP1, 4EBP1) is overexpressed in many human cancers including breast cancer, yet the role of 4EBP1 in breast cancer remains understudied. Despite the known role of 4EBP1 as a negative regulator of cap-dependent protein translation, 4EBP1 is predicted to be an essential driving oncogene in many cancer cell lines in vitro, and can act as a driver of cancer cell proliferation. EIF4EBP1 is located within the 8p11-p12 genomic locus, which is frequently amplified in breast cancer and is known to predict poor prognosis and resistance to endocrine therapy. METHODS: Here we evaluated the effect of 4EBP1 targeting using shRNA knock-down of expression of 4EBP1, as well as response to the mTORC targeted drug everolimus in cell lines representing different breast cancer subtypes, including breast cancer cells with the 8p11-p12 amplicon, to better define a context and mechanism for oncogenic 4EBP1. RESULTS: Using a genome-scale shRNA screen on the SUM panel of breast cancer cell lines, we found 4EBP1 to be a strong hit in the 8p11 amplified SUM-44 cells, which have amplification and overexpression of 4EBP1. We then found that knock-down of 4EBP1 resulted in dramatic reductions in cell proliferation in 8p11 amplified breast cancer cells as well as in other luminal breast cancer cell lines, but had little or no effect on the proliferation of immortalized but non-tumorigenic human mammary epithelial cells. Kaplan-Meier analysis of EIF4EBP1 expression in breast cancer patients demonstrated that overexpression of this gene was associated with reduced relapse free patient survival across all breast tumor subtypes. CONCLUSIONS: These results are consistent with an oncogenic role of 4EBP1 in luminal breast cancer and suggests a role for this protein in cell proliferation distinct from its more well-known role as a regulator of cap-dependent translation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/metabolismo , Oncogenes , Fosfoproteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular , Proliferación Celular , Cromosomas Humanos Par 8/genética , Supervivencia sin Enfermedad , Everolimus/farmacología , Femenino , Amplificación de Genes , Técnicas de Silenciamiento del Gen , Humanos , Estimación de Kaplan-Meier , Células MCF-7 , Fosfoproteínas/genética , Fosforilación , Pronóstico , Receptores de Estrógenos , Recurrencia , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Transfección
5.
Wound Repair Regen ; 27(4): 335-344, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30805987

RESUMEN

Large bone injuries, defects, and chronic wounds present a major problem for medicine. Several therapeutic strategies are used clinically to precipitate bone including a combination therapy delivering osteoinductive bone morphogenetic protein 2 (rhBMP-2) via an osteoconductive scaffold (absorbable collagen sponge [ACS], i.e., INFUSE). Adverse side effects reportedly associated with rhBMP2 administration include rampant inflammation and clinical failures. Although acute inflammation is necessary for proper healing in bone, inflammatory cascade dysregulation can result in sustained tissue damage and poor healing. We hypothesized that a subclinical dose of rhBMP2 modeled in the murine calvarial defect would not precipitate alterations to inflammatory markers during acute phases of bone wound healing. We utilized the 5 mm critical size calvarial defect in C57BL6 wild-type mice which were subsequently treated with ACS and a subclinical dose of rhBMP2 shown to be optimal for healing. Three and 7-day postoperative time points were used to assess the role that rhBMP-2 plays in modulating inflammation vs. ACS alone by cytokine array and histological interrogation. Data revealed that rhBMP-2 delivery resulted in substantial modulation of several markers associated with inflammation, most of which decreased to levels similar to control by the 7-day time point. Additionally, while rhBMP-2 administration increased macrophage response, this peptide had a little noticeable effect on traditional markers of macrophage polarization (M1-iNOS, M2-Arg1). These results suggest that rhBMP-2 delivered at a lower dose does not precipitate rampant inflammation. Thus, an assessment of dosing for rhBMP-2 therapies may lead to better healing outcomes and less surgical failure.


Asunto(s)
Proteína Morfogenética Ósea 2/farmacología , Colágeno/farmacología , Fracturas Óseas/patología , Inflamación/patología , Osteogénesis/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Implantes Absorbibles , Animales , Modelos Animales de Enfermedad , Fracturas Óseas/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Osteogénesis/fisiología , Andamios del Tejido , Cicatrización de Heridas/fisiología
6.
FASEB J ; 28(1): 395-407, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24081905

RESUMEN

Our previous work has shown that Akt3 is required for mitochondrial biogenesis in primary human endothelial cells (ECs) and in Akt3-null mice; Akt3 affects subcellular localization of peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1α), the master regulator of mitochondrial biogenesis. The purpose of this study is to determine the mechanism by which Akt3 controls the subcellular distribution of PGC-1α and to explore the effect on mitochondrial biogenesis and turnover during angiogenesis. Here we use standard biochemical analyses and Akt3-knockdown strategies to show that Akt3 controls the stabilization of chromosome maintenance region-1 (CRM-1), the major nuclear export receptor. Site-directed mutagenesis and association analyses show that PGC-1α nuclear export is CRM-1 dependent. Akt3 knockdown and CRM-1 overexpression cause 3-fold reductions in PGC-1α target gene expression, compared to control levels. Akt3 inhibition causes autophagy, as measured by autophagosome formation, in a CRM-1-dependent, Akt1/mTOR-independent pathway. In vivo, Akt3-null and heterozygous mice show dose-dependent decreases in angiogenesis compared to wild-type littermates (~5- and 2.5-fold decreases, respectively), as assessed by Matrigel plug assays. This correlates with an ~1.5-fold decrease in mitochondrial Cox IV expression. Our studies suggest that Akt3 is a regulator of mitochondrial dynamics in the vasculature via regulation of CRM-1-dependent nuclear export.


Asunto(s)
Autofagia/fisiología , Carioferinas/metabolismo , Mitocondrias/metabolismo , Recambio Mitocondrial/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Autofagia/genética , Western Blotting , Técnica del Anticuerpo Fluorescente , Células Endoteliales de la Vena Umbilical Humana , Inmunoprecipitación , Carioferinas/genética , Ratones , Ratones Noqueados , Recambio Mitocondrial/genética , Proteínas Proto-Oncogénicas c-akt/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Citoplasmáticos y Nucleares/genética , Proteína Exportina 1
7.
Dev Biol ; 373(1): 163-75, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23103584

RESUMEN

To evaluate potential roles of nitric oxide (NO) in the regulation of the endothelial lineage and neovascular processes (vasculogenesis and angiogenesis) we evaluated endothelial nitric oxide synthase (eNOS) and phosphorylated eNOS (p-eNOS) expression in 7.2-8.5 days post-coitum (dpc) mouse embryos. Analysis revealed that p-eNOS((S1177)) but not P-eNOS((S617)) or P-eNOS((T495)) was expressed in a subpopulation of angioblasts (TAL-1(+)/Flk-1(+)/CD31(-)/CD34(-)/VE-Cadherin(-)) at 7.2 dpc. A role of the VEGF/Akt1/eNOS signaling pathway in the regulation of the endothelial cell (EC) lineage was suggested by the strong correlation observed between cell division and p-eNOS((S1177)) expression in both angioblasts and embryonic endothelial cells (EECs, TAL-1(+)/Flk-1(+)/CD31(+)/CD34(+)/VE-Cadherin(+)). Our studies using Akt1 null mouse embryos show a reduction in p-eNOS((S1177)) expression in angioblast and EECs that is correlated with a decrease in endothelial cell proliferation and results in changes in VEGF-induced vascular patterning. Further, we show that VEGF-mediated cell proliferation in Flk-1(+) cells in allantoic cultures is decreased by pharmacological inhibitors of the VEGF/Akt1/eNOS signaling pathways. Taken together, our findings suggest that VEGF-mediated eNOS phosphorylation on Ser1177 regulates angioblast and EEC division, which underlies the formation of blood vessels and vascular networks.


Asunto(s)
Proliferación Celular , Células Endoteliales/fisiología , Mioblastos Cardíacos/fisiología , Neovascularización Fisiológica/fisiología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Transducción de Señal/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Alantoides/citología , Animales , Línea Celular , Linaje de la Célula/fisiología , Células Endoteliales/metabolismo , Citometría de Flujo , Inmunohistoquímica , Ratones , Microscopía Fluorescente , Mioblastos Cardíacos/metabolismo , Fosforilación , Transducción de Señal/genética
8.
Cell Death Dis ; 15(5): 374, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811543

RESUMEN

High workload-induced cellular stress can cause pancreatic islet ß cell death and dysfunction, or ß cell failure, a hallmark of type 2 diabetes mellitus. Thus, activation of molecular chaperones and other stress-response genes prevents ß cell failure. To this end, we have shown that deletion of the glucose-regulated protein 94 (GRP94) in Pdx1+ pancreatic progenitor cells led to pancreas hypoplasia and reduced ß cell mass during pancreas development in mice. Here, we show that GRP94 was involved in ß cell adaption and compensation (or failure) in islets from leptin receptor-deficient (db/db) mice in an age-dependent manner. GRP94-deficient cells were more susceptible to cell death induced by various diabetogenic stress conditions. We also identified a new client of GRP94, insulin-like growth factor-1 receptor (IGF-1R), a critical factor for ß cell survival and function that may mediate the effect of GRP94 in the pathogenesis of diabetes. This study has identified essential functions of GRP94 in ß cell failure related to diabetes.


Asunto(s)
Células Secretoras de Insulina , Receptor IGF Tipo 1 , Animales , Ratones , Muerte Celular , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 1/genética , Receptores de Leptina/metabolismo , Receptores de Leptina/genética
9.
Int J Cancer ; 130(3): 532-43, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21351097

RESUMEN

The PI3 kinase/Akt pathway is commonly deregulated in human cancers, functioning in such processes as proliferation, glucose metabolism, survival and motility. We have previously described a novel function for one of the Akt isoforms (Akt3) in primary endothelial cells: the control of VEGF-induced mitochondrial biogenesis. We sought to determine if Akt3 played a similar role in carcinoma cells. Because the PI3 kinase/Akt pathway has been strongly implicated as a key regulator in ovarian carcinoma, we tested the role of Akt3 in this tumor type. Silencing of Akt3 by shRNA did not cause an overt reduction in mitochondrial gene expression in a series of PTEN positive ovarian cancer cells. Rather, we find that blockade of Akt3, results in smaller, less vascularized tumors in a xenograft mouse model that is correlated with a reduction in VEGF expression. We find that blockade of Akt3, but not Akt1, results in a reduction in VEGF secretion and retention of VEGF protein in the endoplasmic reticulum (ER). The reduction in secretion under conditions of Akt3 blockade is, at least in part, due to the down regulation of the resident golgi protein and reported tumor cell marker, RCAS1. Conversely, over-expression of Akt3 results in an increase in RCAS1 expression and in VEGF secretion. Silencing of RCAS1 using siRNA inhibits VEGF secretion. These findings suggest an important role for Akt3 in the regulation of RCAS1 and VEGF secretion in ovarian cancer cells.


Asunto(s)
Neovascularización Patológica , Neoplasias Ováricas/enzimología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Antígenos de Neoplasias/metabolismo , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , Ratones , Ratones SCID , Mitocondrias/genética , Mitocondrias/metabolismo , Neovascularización Patológica/genética , Neoplasias Ováricas/irrigación sanguínea , Neoplasias Ováricas/genética , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal , Carga Tumoral/genética , Ensayos Antitumor por Modelo de Xenoinjerto
10.
J Vasc Res ; 49(2): 89-100, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22249024

RESUMEN

BACKGROUND: Poly-N-acetyl glucosamine nanofibers derived from a marine diatom have been used to increase cutaneous wound healing. These nanofibers exert their activity by specifically activating integrins, which makes them a useful tool for dissecting integrin-mediated pathways. We have shown that short-fiber poly-N-acetyl glucosamine nanofiber (sNAG) treatment of endothelial cells results in increased cell motility and metabolic rate in the absence of increased cell proliferation. RESULTS: Using a Seahorse Bioanalyzer to measure oxygen consumption in real time, we show that sNAG treatment increases oxygen consumption rates, correlated with an integrin-dependent activation of Akt1. Akt1 activation leads to an increase in the expression of the transcriptional coactivator, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). This is not due to increased mitochondrial biogenesis, but is associated with an increase in the expression of pyruvate dehydrogenase kinase 4 (PDK4), suggesting regulation of fatty acid oxidation. Blockade of fatty acid oxidation with etomoxir, an O-carnitine palmitoyltransferase-1 inhibitor, blocks the sNAG-dependent increased oxygen consumption. (3)H-palmitate uptake experiments indicate a PDK4-dependent increase in fatty acid oxidation, which is required for nanofiber-induced cell motility. CONCLUSIONS: Our findings imply a linear pathway whereby an integrin-dependent activation of Akt1 leads to increased PGC-1α and PDK4 expression resulting in increased energy production by fatty acid oxidation.


Asunto(s)
Acetilglucosamina/farmacología , Ácidos Grasos/metabolismo , Proteínas de Choque Térmico/biosíntesis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción/biosíntesis , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Compuestos Epoxi/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Nanofibras , Oxidación-Reducción , PPAR gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Proteínas Quinasas/biosíntesis , Proteínas Serina-Treonina Quinasas/metabolismo , Regulación hacia Arriba
11.
JACC CardioOncol ; 4(4): 535-548, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36444237

RESUMEN

Background: Trametinib is a MEK1 (mitogen-activated extracellular signal-related kinase kinase 1) inhibitor used in the treatment of BRAF (rapid accelerated fibrosarcoma B-type)-mutated metastatic melanoma. Roughly 11% of patients develop cardiomyopathy following long-term trametinib exposure. Although described clinically, the molecular landscape of trametinib cardiotoxicity has not been characterized. Objectives: The aim of this study was to test the hypothesis that trametinib promotes widespread transcriptomic and cellular changes consistent with oxidative stress and impairs cardiac function. Methods: Mice were treated with trametinib (1 mg/kg/d). Echocardiography was performed pre- and post-treatment. Gross, histopathologic, and biochemical assessments were performed to probe for molecular and cellular changes. Human cardiac organoids were used as an in vitro measurement of cardiotoxicity and recovery. Results: Long-term administration of trametinib was associated with significant reductions in survival and left ventricular ejection fraction. Histologic analyses of the heart revealed myocardial vacuolization and calcification in 28% of animals. Bulk RNA sequencing identified 435 differentially expressed genes and 116 differential signaling pathways following trametinib treatment. Upstream gene analysis predicted interleukin-6 as a regulator of 17 relevant differentially expressed genes, suggestive of PI3K/AKT and JAK/STAT activation, which was subsequently validated. Trametinib hearts displayed elevated markers of oxidative stress, myofibrillar degeneration, an 11-fold down-regulation of the apelin receptor, and connexin-43 mislocalization. To confirm the direct cardiotoxic effects of trametinib, human cardiac organoids were treated for 6 days, followed by a 6-day media-only recovery. Trametinib-treated organoids exhibited reductions in diameter and contractility, followed by partial recovery with removal of treatment. Conclusions: These data describe pathologic changes observed in trametinib cardiotoxicity, supporting the exploration of drug holidays and alternative pharmacologic strategies for disease prevention.

12.
J Trauma ; 71(2 Suppl 1): S194-6, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21814118

RESUMEN

BACKGROUND: The purpose of this study was to evaluate the ability of a membrane material, consisting only of short poly-N-acetyl glucosamine (sNAG) nanofibers, to regenerate bone tissue after implantation into circular holes in the rabbit femur. METHODS: Three circular holes were created in the femurs of five male New Zealand white rabbits. The holes were ∼ 2.0 mm in diameter. Three holes in the left femur were implanted with the comparative control substance (Bone Wax; Ethicon, Inc.); three holes in the right femur were implanted with the sNAG membrane test article. Animals were killed 4 weeks after surgery, and macroscopic evaluation of the implant sites was made. Hematoxylin and eosin histology was performed on both control and test sites. RESULTS: All control (bone wax) sites had visible holes (defects) at the 28-day end point of the study and showed no evidence of new bone formation. All the 15 sNAG test sites were found to have new bone tissue present in the bone hole defects. Hematoxylin and eosin histology of the sNAG-treated test sites showed the presence of osteoblasts, osteocytes, and trabecula of new bone formation at the 28-day end point of the study. CONCLUSIONS: The sNAG membrane test material activated the regeneration of new bone tissue in a rabbit femur bone model after 28 days of implantation, whereas the control bone wax material did not.


Asunto(s)
Acetilglucosamina/farmacología , Regeneración Ósea/efectos de los fármacos , Fémur/efectos de los fármacos , Fémur/lesiones , Animales , Modelos Animales de Enfermedad , Fémur/patología , Masculino , Nanofibras , Osteoblastos/efectos de los fármacos , Osteoblastos/patología , Conejos
13.
Mol Cell Biol ; 27(9): 3353-66, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17339335

RESUMEN

Ets1 is a member of the Ets transcription factor family. Alternative splicing of exon VII results in two naturally occurring protein isoforms: full-length Ets1 (p51-Ets1) and Ets1(DeltaVII) (p42-Ets1). These isoforms bear key distinctions regarding protein-protein interactions, DNA binding kinetics, and transcriptional target specificity. Disruption of both Ets1 isoforms in mice results in the loss of detectable NK and NKT cell activity and defects in B and T lymphocytes. We generated mice that express only the Ets1(DeltaVII) isoform. Ets1(DeltaVII) homozygous mice express no p51-Ets1 and elevated levels of the p42-Ets1 protein relative to the wild type and display increased perinatal lethality, thymomegaly, and peripheral lymphopenia. Proliferation was increased in both the thymus and the spleen, while apoptosis was decreased in the thymus and increased in the spleen of homozygotes. Significant elevations of CD8(+) and CD8(+)CD4(+) thymocytes were observed. Lymphoid cell (CD19(+), CD4(+), and CD8(+)) reductions were predominantly responsible for diminished spleen cellularity, with fewer memory cells and a failure of homeostatic proliferation to maintain peripheral lymphocytes. Collectively, the Ets1(DeltaVII) mutants demonstrate lymphocyte maturation defects associated with misregulation of p16(Ink4a), p27(Kip1), and CD44. Thus, a balance in the differential regulation of Ets1 isoforms represents a potential mechanism in the control of lymphoid maturation and homeostasis.


Asunto(s)
Homeostasis , Linfocitos/citología , Linfocitos/metabolismo , Proteína Proto-Oncogénica c-ets-1/deficiencia , Proteína Proto-Oncogénica c-ets-1/metabolismo , Bazo/metabolismo , Timo/metabolismo , Animales , Secuencia de Bases , Proliferación Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación de la Expresión Génica , Heterocigoto , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Ratones , Datos de Secuencia Molecular , Fenotipo , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Proto-Oncogénica c-ets-1/genética , Bazo/citología , Timo/citología , Transcripción Genética/genética
14.
Ann Surg ; 250(2): 322-30, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19638916

RESUMEN

INTRODUCTION: In several fields of surgery, the treatment of complicated tissue defects is an unsolved clinical problem. In particular, the use of tissue scaffolds has been limited by poor revascularization and integration. In this study, we developed a polymer, poly-N-acetyl-glucosamine (sNAG), with bioactive properties that may be useful to overcome these limitations. OBJECTIVE: To develop a scaffold-like membrane with bioactive properties and test the biologic effects in vitro and in vivo in diabetic wound healing. METHODS: In vitro, cells-nanofibers interactions were tested by cell metabolism and migration assays. In vivo, full thickness wounds in diabetic mice (n = 15 per group) were treated either with sNAG scaffolds, with a cellulosic control material, or were left untreated. Wound healing kinetics, including wound reepithelialization and wound contraction as well as microscopic metrics such as tissue growth, cell proliferation (Ki67), angiogenesis (PECAM-1), cell migration (MAP-Kinase), and keratinocyte migration (p 63) were monitored over a period of 28 days. Messenger RNA levels related to migration (uPAR), angiogenesis (VEGF), inflammatory response (IL-1beta), and extracellular matrix remodeling (MMP3 and 9) were measured in wound tissues. RESULTS: sNAG fibers stimulated cell metabolism and the in vitro migratory activity of endothelial cells and fibroblasts. sNAG membranes profoundly accelerated wound closure mainly by reepithelialization and increased keratinocyte migration (7.5-fold), granulation tissue formation (2.8-fold), cell proliferation (4-fold), and vascularization (2.7-fold) compared with control wounds. Expression of markers of angiogenesis (VEGF), cell migration (uPAR) and ECM remodeling (MMP3, MMP9) were up-regulated in sNAG treated wounds compared with controls. CONCLUSIONS: The key mechanism of the bioactive membranes is the cell-nanofiber stimulatory interaction. Engineering of bioactive materials may represent the clinical solution for a number of complex tissue defects.


Asunto(s)
Implantes Absorbibles , Acetilglucosamina/uso terapéutico , Complicaciones de la Diabetes/terapia , Úlcera Cutánea/terapia , Andamios del Tejido , Cicatrización de Heridas/efectos de los fármacos , Acetilglucosamina/farmacología , Animales , Técnicas de Cultivo de Célula , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Complicaciones de la Diabetes/metabolismo , Complicaciones de la Diabetes/patología , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica/efectos de los fármacos , Úlcera Cutánea/metabolismo , Úlcera Cutánea/patología , Cicatrización de Heridas/fisiología
15.
FASEB J ; 22(9): 3264-75, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18524868

RESUMEN

The growth factor, vascular endothelial growth factor (VEGF), induces angiogenesis and promotes endothelial cell (EC) proliferation. Affymetrix gene array analyses show that VEGF stimulates the expression of a cluster of nuclear-encoded mitochondrial genes, suggesting a role for VEGF in the regulation of mitochondrial biogenesis. We show that the serine threonine kinase Akt3 specifically links VEGF to mitochondrial biogenesis. A direct comparison of Akt1 vs. Akt3 gene silencing was performed in ECs and has uncovered a discrete role for Akt3 in the control of mitochondrial biogenesis. Silencing of Akt3, but not Akt1, results in a decrease in mitochondrial gene expression and mtDNA content. Nuclear-encoded mitochondrial gene transcripts are also found to decrease when Akt3 expression is silenced. Concurrent with these changes in mitochondrial gene expression, lower O(2) consumption was observed. VEGF stimulation of the major mitochondrial import protein TOM70 is also blocked by Akt3 inhibition. In support of a role for Akt3 in the regulation of mitochondrial biogenesis, Akt3 silencing results in the cytoplasmic accumulation of the master regulator of mitochondrial biogenesis, PGC-1alpha, and a reduction in known PGC-1alpha target genes. Finally, a subtle but significant, abnormal mitochondrial phenotype is observed in the brain tissue of AKT3 knockout mice. These results suggest that Akt3 is important in coordinating mitochondrial biogenesis with growth factor-induced increases in cellular energy demands.


Asunto(s)
Mitocondrias/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Factor A de Crecimiento Endotelial Vascular/fisiología , Animales , Células Cultivadas , Endotelio Vascular/citología , Proteínas de Choque Térmico/metabolismo , Humanos , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Factores de Transcripción/metabolismo
16.
Biochem Pharmacol ; 169: 113644, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31542386

RESUMEN

A hallmark of acute kidney injury (AKI) is vascular rarefication and mitochondrial dysfunction. Promoting vascular recovery following AKI could facilitate kidney repair as the vasculature is responsible for oxygen and nutrient delivery to extravascular tissues. Little is known about mitochondrial biogenesis (MB) in endothelial cells, and the role of 5-HT1F receptor signaling in MB has only been studied in epithelial cells. Our laboratory has shown that stimulating MB through the 5-HT1F receptor promotes recovery from AKI and that 5-HT1F receptor knockout mice have decreased MB and poor renal recovery. We hypothesized that the 5-HT1F receptor plays a role in vascular homeostasis and mediates MB in renal endothelial cells. 5-HT1F receptor knockout mice had decreased renal vascular content, as evidenced by decreased CD31+ endothelial cells and αSMA+ vessels. Human glomerular endothelial cells (HEC) and mouse glomerular endothelial cells (MEC) expressed the 5-HT1F receptor. Treatment of HEC and MEC with 5-HT1F receptor agonists LY344864 or lasmiditan (0-500 nM) induced MB as evidenced by maximal mitochondrial respiration, a marker of MB. HEC and MEC treated with lasmiditan or LY344864 also had increased nuclear- and mitochondrial-encoded proteins (PGC1α, COX-1, and VDAC), and mitochondrial number, confirming MB. Treatment of HEC with LY344864 or lasmiditan enhanced endothelial branching morphogenesis and migration, indicating a role for 5-HT1F receptor stimulation in angiogenic pathways. We propose that stimulation of 5-HT1F receptor is involved in MB in endothelial cells and that treatment with 5-HT1F receptor agonists could restore stimulate repair and recovery following kidney injury.


Asunto(s)
Células Endoteliales/fisiología , Neovascularización Fisiológica/fisiología , Biogénesis de Organelos , Receptores de Serotonina/fisiología , Lesión Renal Aguda/etiología , Animales , Benzamidas/farmacología , Carbazoles/farmacología , Células Cultivadas , Fluorobencenos/farmacología , Riñón/irrigación sanguínea , Masculino , Ratones , Ratones Endogámicos C57BL , Piperidinas/farmacología , Piridinas/farmacología , Receptor de Serotonina 5-HT1F
17.
J Vasc Res ; 45(3): 222-32, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18097146

RESUMEN

Poly-N-acetyl glucosamine (pGlcNAc) nanofiber-derived materials effectively achieve hemostasis during surgical procedures. Treatment of cutaneous wounds with pGlcNAc in a diabetic mouse animal model causes marked increases in cell proliferation and angiogenesis. We sought to understand the effect of the pGlcNAc fibers on primary endothelial cells (EC) in culture and found that pGlcNAc induces EC motility. Cell motility induced by pGlcNAc fibers is blocked by antibodies directed against alphaVbeta3 and alpha5beta1 integrins, both known to play important roles in the regulation of EC motility, in vitroand in vivo. pGlcNAc treatment activates mitogen-activated protein kinase and increases Ets1, vascular endothelial growth factor (VEGF) and interleukin 1 (IL-1) expression. pGlcNAc activity is not secondary to its induction of VEGF; inhibition of the VEGF receptor does not inhibit the pGlcNAc-induced expression of Ets1 nor does pGlcNAc cause the activation of VEGF receptor. Both dominant negative and RNA interference inhibition of Ets1 blocks pGlcNAc-induced EC motility. Antibody blockade of integrin results in the inhibition of pGlcNAc-induced Ets1 expression. These findings support the hypothesis that pGlcNAc fibers induce integrin activation which results in the regulation of EC motility and thus in angiogenesis via a pathway dependent on the Ets1 transcription factor and demonstrate that Ets1 is a downstream mediator of integrin activation.


Asunto(s)
Acetilglucosamina/farmacología , Movimiento Celular/efectos de los fármacos , Células Endoteliales/fisiología , Integrinas/fisiología , Nanoestructuras , Neovascularización Fisiológica/efectos de los fármacos , Proteína Proto-Oncogénica c-ets-1/fisiología , Movimiento Celular/fisiología , Células Cultivadas , Activación Enzimática , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neovascularización Fisiológica/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo
18.
Oncogene ; 23(39): 6654-65, 2004 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-15247905

RESUMEN

The ETS1 transcription factor is a member of the Ets family of conserved sequence-specific DNA-binding proteins. ETS1 has been shown to play important roles in various cellular processes such as proliferation, differentiation, lymphoid development, motility, invasion and angiogenesis. These diverse roles of ETS1 are likely to be dependent on specific protein interactions. To identify proteins that interact with ETS1, a yeast two-hybrid screen was conducted. Here, we describe the functional interaction between SP100 and ETS1. SP100 protein interacts with ETS1 both in vitro and in vivo. SP100 is localized to nuclear bodies and ETS1 expression alters the nuclear body morphology in living cells. SP100 negatively modulates ETS1 transcriptional activation of the MMP1 and uPA promoters in a dose-dependent manner, decreases the expression of these endogenous genes, and reduces ETS1 DNA binding. Expression of SP100 inhibits the invasion of breast cancer cells and is induced by Interferon-alpha, which has been shown to inhibit the invasion of cancer cells. These data demonstrate that SP100 modulates ETS1-dependent biological processes.


Asunto(s)
Antígenos Nucleares/fisiología , Autoantígenos/fisiología , Proteínas Portadoras/fisiología , Péptidos y Proteínas de Señalización Intracelular , Proteínas Nucleares/fisiología , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Bases , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proteínas Co-Represoras , Cartilla de ADN , Humanos , Chaperonas Moleculares , Invasividad Neoplásica , Técnicas del Sistema de Dos Híbridos
19.
J Immunol Methods ; 296(1-2): 31-6, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15680148

RESUMEN

Introducing genes into cells is a crucial step in many fields of basic research, as well as for the development of new drugs and therapies. Many cell types are resistant to normal methods of gene delivery, such as lipid based transfection and electroporation. Delivery to resistant cell lines can be costly or inefficient. Natural killer (NK) cells are highly resistant to transfection. We have developed a novel method to deliver exogenous genes in the NK cell line, NK92. Using a combination of electroporation and a defined buffer, we were able to obtain an electroporation efficiency of 40% in NK92 cells. Using RNAi, we show significant reduction of an endogenous protein (ETS1) using this optimized buffer and electroporation conditions. Taken together, the results show a functional and cost effective method for the expression of exogenous genes in NK cells.


Asunto(s)
Electroporación , Células Asesinas Naturales/inmunología , Transfección/economía , Transfección/métodos , Antígenos CD/análisis , Antígenos CD/genética , Antígenos CD/fisiología , Antígeno B7-2 , Tampones (Química) , Línea Celular , Humanos , Células Asesinas Naturales/citología , Glicoproteínas de Membrana/análisis , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/fisiología , ARN Interferente Pequeño/genética
20.
FASEB J ; 17(15): 2278-80, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14525946

RESUMEN

We investigated the inter-relationship between two downstream effectors of vascular endothelial growth factor (VEGF), the serine threonine kinase Akt (also known as protein kinase B) and the transcription factor ETS1, during tubulogenesis. Human endothelial cell culture and the in vivo Drosophila tracheal systems are employed in comparative analysis. We show that VEGF stimulates the expression of ETS1 through a phosphatidylinositol-3-kinase (PI3K)/Akt-dependent pathway in primary endothelial cells. Activation of Akt results in vessel formation in vitro, a process that is blocked by expression of antisense ETS1. The functional relationship between ETS and Akt was then tested in the homologous tubular system in Drosophila. Contrary to expectation, ETS1 and Akt did not form a linear positive regulatory pathway in vivo. Instead, genetic analyses suggest that the Drosophila ETS1 homologue Pointed is required for cell motility per se while Drosophila Akt (Dakt1) is responsible for organized and restricted cell movement that is essential for tubule formation. Taken together, our results show that ETS1 and Akt control different aspects of cell motility that are integrated in the precise regulation of vascular tubule formation.


Asunto(s)
Endotelio Vascular/fisiología , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas/fisiología , Factores de Transcripción/fisiología , Animales , Movimiento Celular , Tamaño de la Célula , Drosophila/anatomía & histología , Drosophila/embriología , Proteínas de Drosophila , Endotelio Vascular/anatomía & histología , Humanos , Modelos Biológicos , Neovascularización Fisiológica , Proteína Proto-Oncogénica c-ets-1 , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-ets , Tráquea/citología , Tráquea/embriología , Transcripción Genética , Factor A de Crecimiento Endotelial Vascular/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA