Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biometals ; 34(4): 795-812, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33900532

RESUMEN

Ruthenium-based metallotherapeutics is an interesting alternative for platinum complexes acting as anticancer agents after the entry of KP1019, NAMI-A, and TLD1339 in clinical trials. Herein, we have synthesized three new arene ruthenium(II)-tetrazole complexes viz. [Ru2(η6-p-cymene)2(2-pytz)2Cl2] (1), [Ru2(η6-p-cymene)2(3-pytz)Cl3] (2), [Ru2(η6-p-cymene)2(4-pytz)Cl3] (3) [2-pytzH = 2-pyridyl tetrazole; 3-pytzH = 3-pyridyl tetrazole; 4-pytzH = 4-pyridyl tetrazole] which have been characterized by different analytical techniques. To aid the understanding of the complex formation, reactions of the arene ruthenium(II) dimer with tetrazoles were investigated using the first principles-based Density Functional Theory (DFT) B3LYP method. Electronic structures, equilibrium geometries of the reactants and products with the first-order saddle points, reactions mechanism, the changes of enthalpy (∆H) and free energy (∆G), chemical stability, and reaction barriers of the complexes were computed using the B3LYP DFT approach. The in vitro cytotoxicity of these complexes was investigated by MTT assay on different cancer cell lines which reveal complex 2 as the most significant cytotoxic agent toward the HeLa cell line. The complexes have also shown a strong binding affinity towards CT-DNA and albumin proteins (HSA and BSA) as analyzed through spectroscopic techniques. Investigation of the mechanism of cell death by complex 2 was further performed by various staining techniques, flow cytometry, and gene expression analysis by RT-PCR. Inhibition of cell migration study has been also revealed the possibility of complex 2 to act as a prospective anti-metastatic agent.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Rutenio/química , Rutenio/farmacología , Tetrazoles/química , Tetrazoles/farmacología , Cicatrización de Heridas/efectos de los fármacos
3.
J Inorg Biochem ; 195: 164-173, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30954693

RESUMEN

Galactose Oxidase (GOase) and catechol oxidase (COase) are the metalloenzymes of copper having monomeric and dimeric sites of coordination, respectively. This paper summarizes the results of our studies on the structural, spectral and catalytic properties of new mononuclear copper (II) complexes [CuL(OAc)] (1), and [CuL2] (2), (HL = 2,4­dichloro­6­{[(2'­dimethyl­aminoethyl)methylamino]methyl}­phenol) which can mimic the functionalities of the metalloenzymes GOase and COase. The structure of the compounds has been elucidated by X-ray crystallography and the mimicked Cu(II) catalysts were further characterized by EPR. These mimicked models were used for GOase and COase catalysis. The GOase catalytic results were identified by GC-MS and, analyzed by HPLC at room temperature. The conversion of benzyl alcohol to benzaldehyde were significant in presence of a strong base, Bu4NOMe in comparison to the neutral medium. Apart from that, despite of being monomeric in nature, both the homogeneous catalysts are very prone to participate in COase mimicking oxidation reaction. Nevertheless, during COase catalysis, complex 1 was found to convert 3,5­ditertarybutyl catechol (3,5-DTBC) to 3,5­ditertarybutyl quinone (3,5-DTBQ) having greater rate constant, kcat or turn over number (TON) value over complex 2. The generation of reactive intermediates during COase catalysis were accounted by electrospray ionization mass spectrometry (ESI-MS). Through mechanistic approach, we found that H2O2 is the byproduct for both the GOase and COase catalysis, thus, confirming the generation of reactive oxygen species during catalysis. Notably, complex 1 having mono-ligand coordinating atmosphere has superior catalytic activity for both cases in comparison to complex 2, that is having di-ligand environment.


Asunto(s)
Materiales Biomiméticos/química , Complejos de Coordinación/química , Cobre/química , Bases de Mannich/química , Materiales Biomiméticos/síntesis química , Catálisis , Catecol Oxidasa/química , Complejos de Coordinación/síntesis química , Galactosa Oxidasa/química , Ligandos , Bases de Mannich/síntesis química , Modelos Químicos , Oxidación-Reducción , Oxígeno/química
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 71(4): 1327-32, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18515179

RESUMEN

How solvent conditions such as solvent polarity and hydrogen-bonding affect the fluorescence of a newly synthesized 3-pyrazolyl 2-pyrazoline derivative (Pyz) having pharmaceutical activity has been explored. The solvatochromic effect of Pyz is due to a change in dipole moment of the compound in the excited state. The relaxation of S1 state is perturbed in hydrogen-bonding solvents. The fluorescence properties of the systems are strongly dependent on the polarity of the media. The non-radiative relaxation process is facilitated by an increase in the polarity of the media. The photophysical response of Pyz in different solvents has been explained considering solute-solvent interactions.


Asunto(s)
Pirazoles/química , Solventes/química , Espectrofotometría/métodos , Enlace de Hidrógeno , Cinética , Modelos Químicos , Espectrometría de Fluorescencia/métodos , Espectrofotometría Ultravioleta/métodos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA