Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(33): E4776-83, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27482120

RESUMEN

TGF-ß activated kinase 1 (TAK1) is a critical signaling hub responsible for translating antigen binding signals to immune receptors for the activation of the AP-1 and NF-κB master transcriptional programs. Despite its importance, known substrates of TAK1 are limited to kinases of the MAPK and IKK families and include no direct effectors of biochemical processes. Here, we identify over 200 substrates of TAK1 using a chemical genetic kinase strategy. We validate phosphorylation of the dynamic switch II region of GTPase Rab1, a mediator of endoplasmic reticulum to Golgi vesicular transport, at T75 to be regulated by TAK1 in vivo. TAK1 preferentially phosphorylates the inactive (GDP-bound) state of Rab1. Phosphorylation of Rab1 disrupts interaction with GDP dissociation inhibitor 1 (GDI1), but not guanine exchange factor (GEF) or GTPase-activating protein (GAP) enzymes, and is exclusive to membrane-localized Rab1, suggesting phosphorylation may stimulate Rab1 membrane association. Furthermore, we found phosphorylation of Rab1 at T75 to be essential for Rab1 function. Previous studies established that the pathogen Legionella pneumophila is capable of hijacking Rab1 function through posttranslational modifications of the switch II region. Here, we present evidence that Rab1 is regulated by the host in a similar fashion, and that the innate immunity kinase TAK1 and Legionella effectors compete to regulate Rab1 by switch II modifications during infection.


Asunto(s)
Interacciones Huésped-Patógeno , Legionella pneumophila/patogenicidad , Quinasas Quinasa Quinasa PAM/fisiología , Procesamiento Proteico-Postraduccional , Proteínas de Unión al GTP rab1/metabolismo , Línea Celular , Aparato de Golgi/ultraestructura , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Inmunidad Innata , Fosforilación
2.
EMBO J ; 32(10): 1469-77, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23572077

RESUMEN

The FIC motif and the eukaryotic-like ankyrin repeats are found in many bacterial type IV effectors, yet little is known about how these domains enable bacteria to modulate host cell functions. Bacterial FIC domains typically bind ATP and transfer adenosine monophosphate moiety onto target proteins. The ankyrin repeat-containing protein AnkX encoded by the intracellular pathogen Legionella pneumophila is unique in that its FIC domain binds to CDP-choline and transfers a phosphocholine residue onto proteins in the Rab1 GTPase family. By determining the structures of unbound AnkX and AnkX with bound CDP-choline, CMP/phosphocholine and CMP, we demonstrate that the orientation of substrate binding in relation to the catalytic FIC motif enables this protein to function as a phosphocholinating enzyme rather than a nucleotidyl transferase. Additionally, the structure reveals that the ankyrin repeats mediate scaffolding interactions that resemble those found in protein-protein interactions, but are unprecedented in intramolecular interactions. Together with phosphocholination experiments, our structures unify a general phosphoryl transferase mechanism common to all FIC enzymes that should be conserved from bacteria to human.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Legionella pneumophila/metabolismo , Fosforilcolina/metabolismo , Repetición de Anquirina , Proteínas Bacterianas/genética , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica , Estructura Terciaria de Proteína
3.
Nature ; 477(7362): 103-6, 2011 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-21822290

RESUMEN

The intracellular pathogen Legionella pneumophila modulates the activity of host GTPases to direct the transport and assembly of the membrane-bound compartment in which it resides. In vitro studies have indicated that the Legionella protein DrrA post-translationally modifies the GTPase Rab1 by a process called AMPylation. Here we used mass spectrometry to investigate post-translational modifications to Rab1 that occur during infection of host cells by Legionella. Consistent with in vitro studies, DrrA-mediated AMPylation of a conserved tyrosine residue in the switch II region of Rab1 was detected during infection. In addition, a modification to an adjacent serine residue in Rab1 was discovered, which was independent of DrrA. The Legionella effector protein AnkX was required for this modification. Biochemical studies determined that AnkX directly mediates the covalent attachment of a phosphocholine moiety to Rab1. This phosphocholine transferase activity used CDP-choline as a substrate and required a conserved histidine residue located in the FIC domain of the AnkX protein. During infection, AnkX modified both Rab1 and Rab35, which explains how this protein modulates membrane transport through both the endocytic and exocytic pathways of the host cell. Thus, phosphocholination of Rab GTPases represents a mechanism by which bacterial FIC-domain-containing proteins can alter host-cell functions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Diacilglicerol Colinafosfotransferasa/metabolismo , Interacciones Huésped-Patógeno/fisiología , Legionella pneumophila/enzimología , Enfermedad de los Legionarios/enzimología , Proteínas de Unión al GTP rab/metabolismo , Animales , Células COS , Chlorocebus aethiops , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HEK293 , Humanos , Enfermedad de los Legionarios/fisiopatología , Espectrometría de Masas , Procesamiento Proteico-Postraduccional
4.
Traffic ; 15(5): 488-99, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24483784

RESUMEN

Tethering proteins play a key role in vesicular transport, ensuring that cargo arrives at a specific destination. The bacterial effector protein SidC and its paralog SdcA have been described as tethering factors encoded by the intracellular pathogen Legionella pneumophila. Here, we demonstrate that SidC proteins are important for early events unique to maturation of vacuoles containing Legionella and discover monoubiquitination of Rab1 as a new SidC-dependent activity. The crystal structure of the SidC N-terminus revealed a novel fold that is important for function and could be involved in Legionella adaptations to evolutionarily divergent host cells it encounters in natural environments.


Asunto(s)
Proteínas Bacterianas/metabolismo , Transporte Biológico/fisiología , Legionella pneumophila/metabolismo , Vacuolas/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Datos de Secuencia Molecular , Ubiquitinación/fisiología , Proteínas de Unión al GTP rab1/metabolismo
5.
Mol Biol Cell ; 35(3): ar27, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38117589

RESUMEN

The intracellular bacterial pathogen Legionella pneumophila (L.p.) manipulates eukaryotic host ubiquitination machinery to form its replicative vacuole. While nearly 10% of L.p.'s ∼330 secreted effector proteins are ubiquitin ligases or deubiquitinases, a comprehensive measure of temporally resolved changes in the endogenous host ubiquitinome during infection has not been undertaken. To elucidate how L.p. hijacks host cell ubiquitin signaling, we generated a proteome-wide analysis of changes in protein ubiquitination during infection. We discover that L.p. infection increases ubiquitination of host regulators of subcellular trafficking and membrane dynamics, most notably ∼40% of mammalian Ras superfamily small GTPases. We determine that these small GTPases undergo nondegradative ubiquitination at the Legionella-containing vacuole (LCV) membrane. Finally, we find that the bacterial effectors SidC/SdcA play a central role in cross-family small GTPase ubiquitination, and that these effectors function upstream of SidE family ligases in the polyubiquitination and retention of GTPases in the LCV membrane. This work highlights the extensive reconfiguration of host ubiquitin signaling by bacterial effectors during infection and establishes simultaneous ubiquitination of small GTPases across the Ras superfamily as a novel consequence of L.p. infection. Our findings position L.p. as a tool to better understand how small GTPases can be regulated by ubiquitination in uninfected contexts.


Asunto(s)
Legionella pneumophila , Proteínas de Unión al GTP Monoméricas , Animales , Legionella pneumophila/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas Bacterianas/metabolismo , Ubiquitinación , Ubiquitina/metabolismo , Vacuolas/metabolismo , Ligasas/metabolismo , Mamíferos/metabolismo
6.
bioRxiv ; 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38765994

RESUMEN

Upon entry into host cells, the facultative intracellular bacterium Legionella pneumophila ( L.p .) uses its type IV secretion system, Dot/Icm, to secrete ~330 bacterial effector proteins into the host cell. Some of these effectors hijack endoplasmic reticulum (ER)-derived vesicles to form the Legionella -containing vacuole (LCV). Despite extensive investigation over decades, the fundamental question persists: Is the LCV membrane distinct from or contiguous with the host ER network? Here, we employ advanced photobleaching techniques, revealing a temporal acquisition of both smooth and rough ER (sER and rER) markers on the LCV. In the early stages of infection, the sER intimately associates with the LCV. Remarkably, as the infection progresses, the LCV evolves into a distinct niche comprising an rER membrane that is independent of the host ER network. We discover that the L.p. effector LidA binds to and recruits two host proteins of the Rab superfamily, Rab10, and Rab4, that play significant roles in acquiring sER and rER membranes, respectively. Additionally, we identify the pivotal role of a host ER-resident protein, BAP31, in orchestrating the transition from sER to rER. While previously recognized for shuttling between sER and rER, we demonstrate BAP31's role as a Rab effector, mediating communication between these ER sub-compartments. Furthermore, using genomic deletion strains, we uncover a novel L.p. effector, Lpg1152, essential for recruiting BAP31 to the LCV and facilitating its transition from sER to rER. Depletion of BAP31 or infection with an isogenic L.p. strain lacking Lpg1152 results in a growth defect. Collectively, our findings illuminate the intricate interplay between molecular players from both host and pathogen, elucidating how L.p. orchestrates the transformation of its residing vacuole membrane from a host-associated sER to a distinct rER membrane that is not contiguous with the host ER network.

7.
bioRxiv ; 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37577546

RESUMEN

The intracellular bacterial pathogen Legionella pneumophila (L.p.) manipulates eukaryotic host ubiquitination machinery to form its replicative vacuole. While nearly 10% of L.p.'s arsenal of ~330 secreted effector proteins have been biochemically characterized as ubiquitin ligases or deubiquitinases, a comprehensive measure of temporally resolved changes in the endogenous host ubiquitinome during infection has not been undertaken. To elucidate how L.p hijacks ubiquitin signaling within the host cell, we undertook a proteome-wide analysis of changes in protein ubiquitination during infection. We discover that L.p. infection results in increased ubiquitination of host proteins regulating subcellular trafficking and membrane dynamics, most notably 63 of ~160 mammalian Ras superfamily small GTPases. We determine that these small GTPases predominantly undergo non-degradative monoubiquitination, and link ubiquitination to recruitment to the Legionella-containing vacuole membrane. Finally, we find that the bacterial effectors SidC/SdcA play a central, but likely indirect, role in cross-family small GTPase ubiquitination. This work highlights the extensive reconfiguration of host ubiquitin signaling by bacterial effectors during infection and establishes simultaneous ubiquitination of small GTPases across the Ras superfamily as a novel consequence of L.p. infection. This work positions L.p. as a tool to better understand how small GTPases can be regulated by ubiquitination in uninfected contexts.

8.
Nat Cell Biol ; 25(11): 1600-1615, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37857833

RESUMEN

A widespread strategy employed by pathogens to establish infection is to inhibit host-cell protein synthesis. Legionella pneumophila, an intracellular bacterial pathogen and the causative organism of Legionnaires' disease, secretes a subset of protein effectors into host cells that inhibit translation elongation. Mechanistic insights into how the bacterium targets translation elongation remain poorly defined. We report here that the Legionella effector SidI functions in an unprecedented way as a transfer-RNA mimic that directly binds to and glycosylates the ribosome. The 3.1 Å cryo-electron microscopy structure of SidI reveals an N-terminal domain with an 'inverted L' shape and surface-charge distribution characteristic of tRNA mimicry, and a C-terminal domain that adopts a glycosyl transferase fold that licenses SidI to utilize GDP-mannose as a sugar precursor. This coupling of tRNA mimicry and enzymatic action endows SidI with the ability to block protein synthesis with a potency comparable to ricin, one of the most powerful toxins known. In Legionella-infected cells, the translational pausing activated by SidI elicits a stress response signature mimicking the ribotoxic stress response, which is activated by elongation inhibitors that induce ribosome collisions. SidI-mediated effects on the ribosome activate the stress kinases ZAKα and p38, which in turn drive an accumulation of the protein activating transcription factor 3 (ATF3). Intriguingly, ATF3 escapes the translation block imposed by SidI, translocates to the nucleus and orchestrates the transcription of stress-inducible genes that promote cell death, revealing a major role for ATF3 in the response to collided ribosome stress. Together, our findings elucidate a novel mechanism by which a pathogenic bacterium employs tRNA mimicry to hijack a ribosome-to-nuclear signalling pathway that regulates cell fate.


Asunto(s)
Legionella pneumophila , Legionella , Enfermedad de los Legionarios , Humanos , Legionella/metabolismo , Microscopía por Crioelectrón , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Enfermedad de los Legionarios/genética , Enfermedad de los Legionarios/microbiología , Transferasas/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología
9.
J Biol Chem ; 286(24): 21915-26, 2011 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-21536679

RESUMEN

The Golgi apparatus is a network of polarized cisternae localized to the perinuclear region in mammalian cells. It undergoes extensive vesiculation at the onset of mitosis and its reassembly requires factors that are in part segregated via the mitotic spindle. Here we show that unlike typical Golgi markers, the Golgi-protein p115 partitioned with the spindle poles throughout mitosis. An armadillo-fold in its N terminus mediated a novel interaction between p115 and γ-tubulin and functioned in its centrosomal targeting. Both the N- and C-terminal regions of p115 were required to maintain Golgi structure. Strikingly, p115 was essential for mitotic spindle function and the resolution of the cytokinetic bridge because its depletion resulted in spindle collapse, chromosome missegregation, and failed cytokinesis. We demonstrate that p115 plays a critical role in mitosis progression, implicating it as the only known golgin to regulate both mitosis and apoptosis.


Asunto(s)
Regulación de la Expresión Génica , Aparato de Golgi/metabolismo , Mitosis , Tubulina (Proteína)/metabolismo , Proteínas de Transporte Vesicular/fisiología , Animales , Apoptosis , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Cromosomas/ultraestructura , Proteínas de la Matriz de Golgi , Células HeLa , Humanos , Estructura Terciaria de Proteína , Huso Acromático/metabolismo , Proteínas de Transporte Vesicular/metabolismo
10.
J Biol Chem ; 286(4): 3129-38, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21084295

RESUMEN

Eukaryotic initiation factor 6 (eIF6), a highly conserved protein from yeast to mammals, is essential for 60 S ribosome biogenesis and assembly. Both yeast and mammalian eIF6 are phosphorylated at Ser-174 and Ser-175 by the nuclear isoform of casein kinase 1 (CK1). The molecular basis of eIF6 phosphorylation, however, remains elusive. In the present work, we show that subcellular distribution of eIF6 in the nuclei and the cytoplasm of mammalian cells is mediated by dephosphorylation and phosphorylation, respectively. This nucleo-cytoplasmic shuttling is dependent on the phosphorylation status at Ser-174 and Ser-175 of eIF6. We demonstrate that Ca(2+)-activated calcineurin phosphatase binds to and promotes nuclear localization of eIF6. Increase in intracellular concentration of Ca(2+) leads to rapid translocation of eIF6 from the cytoplasm to the nucleus, an event that is blocked by specific calcineurin inhibitors cyclosporin A or FK520. Nuclear export of eIF6 is regulated by phosphorylation at Ser-174 and Ser-175 by the nuclear isoform of CK1. Mutation of eIF6 at the phosphorylatable Ser-174 and Ser-175 to alanine or treatment of cells with the CK1 inhibitor, D4476 inhibits nuclear export of eIF6 and results in nuclear accumulation of eIF6. Together, these results establish eIF6 as a substrate for calcineurin and suggest a novel paradigm for calcineurin function in 60 S ribosome biogenesis via regulating the nuclear accumulation of eIF6.


Asunto(s)
Calcineurina/metabolismo , Calcio/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Sustitución de Aminoácidos , Animales , Benzamidas/farmacología , Células COS , Calcineurina/genética , Inhibidores de la Calcineurina , Quinasa de la Caseína I/antagonistas & inhibidores , Quinasa de la Caseína I/genética , Chlorocebus aethiops , Ciclosporina/farmacología , Inhibidores Enzimáticos/farmacología , Factores Eucarióticos de Iniciación/genética , Células HeLa , Humanos , Imidazoles/farmacología , Inmunosupresores , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Mutación Missense , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Subunidades Ribosómicas Grandes de Eucariotas/genética , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Tacrolimus/análogos & derivados , Tacrolimus/farmacología
11.
Nat Commun ; 13(1): 6805, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36357390

RESUMEN

Cells adapt to cold by increasing levels of unsaturated phospholipids and membrane fluidity through conserved homeostatic mechanisms. Here we report an exceptionally large and evolutionarily conserved protein LPD-3 in C. elegans that mediates lipid trafficking to confer cold resilience. We identify lpd-3 mutants in a mutagenesis screen for genetic suppressors of the lipid desaturase FAT-7. LPD-3 bridges the endoplasmic reticulum (ER) and plasma membranes (PM), forming a structurally predicted hydrophobic tunnel for lipid trafficking. lpd-3 mutants exhibit abnormal phospholipid distribution, diminished FAT-7 abundance, organismic vulnerability to cold, and are rescued by Lecithin comprising unsaturated phospholipids. Deficient lpd-3 homologues in Zebrafish and mammalian cells cause defects similar to those observed in C. elegans. As mutations in BLTP1, the human orthologue of lpd-3, cause Alkuraya-Kucinskas syndrome, LPD-3 family proteins may serve as evolutionarily conserved highway bridges critical for ER-associated non-vesicular lipid trafficking and resilience to cold stress in eukaryotic cells.


Asunto(s)
Caenorhabditis elegans , Pez Cebra , Animales , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Fosfolípidos/metabolismo , Retículo Endoplásmico/metabolismo , Membrana Celular/metabolismo , Mamíferos/metabolismo
12.
Life Sci Alliance ; 4(12)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34635501

RESUMEN

The intracellular bacterial pathogen Legionella pneumophila (L.p.) secretes ∼330 effector proteins into the host cell to sculpt an ER-derived replicative niche. We previously reported five L.p. effectors that inhibit IRE1, a key sensor of the homeostatic unfolded protein response (UPR) pathway. In this study, we discovered a subset of L.p. toxins that selectively activate the UPR sensor ATF6, resulting in its cleavage, nuclear translocation, and target gene transcription. In a deviation from the conventional model, this L.p-dependent activation of ATF6 does not require its transport to the Golgi or its cleavage by the S1P/S2P proteases. We believe that our findings highlight the unique regulatory control that L.p exerts upon the three UPR sensors and expand the repertoire of bacterial proteins that selectively perturb host homeostatic pathways.


Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Estrés del Retículo Endoplásmico/genética , Legionella pneumophila/metabolismo , Enfermedad de los Legionarios/metabolismo , Transducción de Señal/genética , Factor de Transcripción Activador 6/genética , Animales , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno/genética , Humanos , Legionella pneumophila/genética , Enfermedad de los Legionarios/microbiología , Ratones , Transporte de Proteínas , Células RAW 264.7 , Transfección , Respuesta de Proteína Desplegada/genética
13.
Curr Opin Cell Biol ; 65: 78-85, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32234681

RESUMEN

Intracellular pathogens have evolved numerous strategies to manipulate their host cells to survive and replicate in a hostile environment. They often exploit membrane trafficking pathways to enter the cell, establish a replicative niche, avoid degradation and immune response, acquire nutrients and lastly, egress. Recent studies on membrane trafficking exploitation by intracellular pathogens have led to the discovery of novel and fascinating cell biology, including a noncanonical mechanism of ubiquitination and a novel mitophagy receptor. Thus, studying how pathogens target host cell membrane trafficking pathways is not only important for the development of new therapeutics, but also helps understanding fundamental mechanisms of cell biology.


Asunto(s)
Membrana Celular/metabolismo , Interacciones Huésped-Patógeno , Animales , Autofagia , Humanos , Modelos Biológicos , Transporte de Proteínas , Vías Secretoras
14.
J Cell Biol ; 219(1)2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31863584

RESUMEN

Glucose transporter 4 (GLUT4) is sequestered inside muscle and fat and then released by vesicle traffic to the cell surface in response to postprandial insulin for blood glucose clearance. Here, we map the biogenesis of this GLUT4 traffic pathway in humans, which involves clathrin isoform CHC22. We observe that GLUT4 transits through the early secretory pathway more slowly than the constitutively secreted GLUT1 transporter and localize CHC22 to the ER-to-Golgi intermediate compartment (ERGIC). CHC22 functions in transport from the ERGIC, as demonstrated by an essential role in forming the replication vacuole of Legionella pneumophila bacteria, which requires ERGIC-derived membrane. CHC22 complexes with ERGIC tether p115, GLUT4, and sortilin, and downregulation of either p115 or CHC22, but not GM130 or sortilin, abrogates insulin-responsive GLUT4 release. This indicates that CHC22 traffic initiates human GLUT4 sequestration from the ERGIC and defines a role for CHC22 in addition to retrograde sorting of GLUT4 after endocytic recapture, enhancing pathways for GLUT4 sequestration in humans relative to mice, which lack CHC22.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Vías Biosintéticas , Cadenas Pesadas de Clatrina/metabolismo , Clatrina/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Transporte de Proteínas , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo
15.
J Cell Biol ; 159(4): 637-48, 2002 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-12438416

RESUMEN

In mammalian cells, the Golgi apparatus undergoes extensive fragmentation during apoptosis. p115 is a key vesicle tethering protein required for maintaining the structural organization of the Golgi apparatus. Here, we demonstrate that p115 was cleaved during apoptosis by caspases 3 and 8. Compared with control cells expressing native p115, those expressing a cleavage-resistant form of p115 delayed Golgi fragmentation during apoptosis. Expression of cDNAs encoding full-length or an NH2-terminal caspase cleavage fragment of p115 had no effect on Golgi morphology. In contrast, expression of the COOH-terminal caspase cleavage product of p115 itself caused Golgi fragmentation. Furthermore, this fragment translocated to the nucleus and its expression was sufficient to induce apoptosis. Most significantly, in vivo expression of the COOH-terminal fragment in the presence of caspase inhibitors, or upon coexpression with a cleavage-resistant mutant of p115, showed that p115 degradation plays a key role in amplifying the apoptotic response independently of Golgi fragmentation.


Asunto(s)
Apoptosis/fisiología , Proteínas Portadoras/metabolismo , Caspasas/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Fragmentos de Péptidos/metabolismo , Proteínas de Transporte Vesicular , Clorometilcetonas de Aminoácidos/metabolismo , Animales , Autoantígenos , Proteínas Portadoras/genética , Inhibidores de Caspasas , Línea Celular , Tamaño de la Célula , Inhibidores Enzimáticos/metabolismo , Etopósido/metabolismo , Colorantes Fluorescentes/metabolismo , Proteínas de la Matriz de Golgi , Humanos , Proteínas de la Membrana/genética , Mutagénesis Sitio-Dirigida , Inhibidores de la Síntesis del Ácido Nucleico/metabolismo , Fosforilación , Ratas , Estaurosporina/metabolismo
16.
Cell Host Microbe ; 25(3): 454-462.e6, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30827827

RESUMEN

Legionella pneumophila (L.p.), the microbe responsible for Legionnaires' disease, secretes ∼300 bacterial proteins into the host cell cytosol. A subset of these proteins affects a wide range of post-translational modifications (PTMs) to disrupt host cellular pathways. L.p. has 5 conserved eukaryotic-like Ser/Thr effector kinases, LegK1-4 and LegK7, which are translocated during infection. Using a chemical genetic screen, we identified the Hsp70 chaperone family as a direct host target of LegK4. Phosphorylation of Hsp70s at T495 in the substrate-binding domain disrupted Hsp70's ATPase activity and greatly inhibited its protein folding capacity. Phosphorylation of cytosolic Hsp70 by LegK4 resulted in global translation inhibition and an increase in the amount of Hsp70 on highly translating polysomes. LegK4's ability to inhibit host translation via a single PTM uncovers a role for Hsp70 in protein synthesis and directly links it to the cellular translational machinery.


Asunto(s)
Células Eucariotas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Interacciones Huésped-Patógeno , Legionella pneumophila/enzimología , Fosfotransferasas/metabolismo , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Células Eucariotas/microbiología , Enfermedad de los Legionarios/microbiología , Fosforilación , Factores de Virulencia/metabolismo
17.
Cell Host Microbe ; 26(4): 551-563.e6, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31540829

RESUMEN

During infection, Legionella pneumophila translocates over 300 effector proteins into the host cytosol, allowing the pathogen to establish an endoplasmic reticulum (ER)-like Legionella-containing vacuole (LCV) that supports bacterial replication. Here, we perform a genome-wide CRISPR-Cas9 screen and secondary targeted screens in U937 human monocyte/macrophage-like cells to systematically identify host factors that regulate killing by L. pneumophila. The screens reveal known host factors hijacked by L. pneumophila, as well as genes spanning diverse trafficking and signaling pathways previously not linked to L. pneumophila pathogenesis. We further characterize C1orf43 and KIAA1109 as regulators of phagocytosis and show that RAB10 and its chaperone RABIF are required for optimal L. pneumophila replication and ER recruitment to the LCV. Finally, we show that Rab10 protein is recruited to the LCV and ubiquitinated by the effectors SidC/SdcA. Collectively, our results provide a wealth of previously undescribed insights into L. pneumophila pathogenesis and mammalian cell function.


Asunto(s)
Legionella pneumophila/patogenicidad , Enfermedad de los Legionarios/patología , Fagocitosis/inmunología , Proteínas/genética , Vacuolas/microbiología , Animales , Proteínas Bacterianas/metabolismo , Línea Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Retículo Endoplásmico/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HEK293 , Células HeLa , Humanos , Legionella pneumophila/genética , Macrófagos/metabolismo , Macrófagos/microbiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Células RAW 264.7 , Células U937 , Factores de Virulencia/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
18.
J Cell Biol ; 216(12): 3931-3948, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29097627

RESUMEN

Intracellular bacterial pathogens have developed versatile strategies to generate niches inside the eukaryotic cells that allow them to survive and proliferate. Making a home inside the host offers many advantages; however, intracellular bacteria must also overcome many challenges, such as disarming innate immune signaling and accessing host nutrient supplies. Gaining entry into the cell and avoiding degradation is only the beginning of a successful intracellular lifestyle. To establish these replicative niches, intracellular pathogens secrete various virulence proteins, called effectors, to manipulate host cell signaling pathways and subvert host defense mechanisms. Many effectors mimic host enzymes, whereas others perform entirely novel enzymatic functions. A large volume of work has been done to understand how intracellular bacteria manipulate membrane trafficking pathways. In this review, we focus on how intracellular bacterial pathogens target innate immune signaling, the unfolded protein response, autophagy, and cellular metabolism and exploit these pathways to their advantage. We also discuss how bacterial pathogens can alter host gene expression by directly modifying histones or hijacking the ubiquitination machinery to take control of several host signaling pathways.


Asunto(s)
Bacterias/metabolismo , Células Eucariotas/microbiología , Interacciones Huésped-Patógeno , Respuesta de Proteína Desplegada/inmunología , Autofagia/genética , Bacterias/genética , Bacterias/crecimiento & desarrollo , Transporte Biológico , Células Eucariotas/inmunología , Células Eucariotas/metabolismo , Regulación de la Expresión Génica , Histonas/genética , Histonas/inmunología , Humanos , Inmunidad Innata , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/inmunología , Transducción de Señal , Ubiquitinación
19.
Nat Commun ; 6: 7887, 2015 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-26219498

RESUMEN

The intracellular pathogen, Legionella pneumophila, secretes ∼300 effector proteins to modulate the host environment. Given the intimate interaction between L. pneumophila and the endoplasmic reticulum, we investigated the role of the host unfolded protein response (UPR) during L. pneumophila infection. Interestingly, we show that the host identifies L. pneumophila infection as a form of endoplasmic reticulum stress and the sensor pATF6 is processed to generate pATF6(N), a transcriptional activator of downstream UPR genes. However, L. pneumophila is able to suppress the UPR and block the translation of prototypical UPR genes, BiP and CHOP. Furthermore, biochemical studies reveal that L. pneumophila uses two effectors (Lgt1 and Lgt2) to inhibit the splicing of XBP1u mRNA to spliced XBP1 (XBP1s), an UPR response regulator. Thus, we demonstrate that L. pneumophila is able to inhibit the UPR by multiple mechanisms including blocking XBP1u splicing and causing translational repression. This observation highlights the utility of L. pneumophila as a powerful tool for studying a critical protein homeostasis regulator.


Asunto(s)
Proteínas Bacterianas/metabolismo , Estrés del Retículo Endoplásmico/genética , Legionella pneumophila , Enfermedad de los Legionarios/genética , Macrófagos/metabolismo , ARN Mensajero/metabolismo , Respuesta de Proteína Desplegada/genética , Factor de Transcripción Activador 6/metabolismo , Western Blotting , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Chaperón BiP del Retículo Endoplásmico , Regulación de la Expresión Génica , Células HEK293 , Proteínas de Choque Térmico/metabolismo , Humanos , Empalme del ARN , Factores de Transcripción del Factor Regulador X , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción CHOP/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Proteína 1 de Unión a la X-Box
20.
J Cell Biol ; 195(6): 943-52, 2011 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-22123831

RESUMEN

Mammalian phagocytes control bacterial infections effectively through phagocytosis, the process by which particles engulfed at the cell surface are transported to lysosomes for destruction. However, intracellular pathogens have evolved mechanisms to avoid this fate. Many bacterial pathogens use specialized secretion systems to deliver proteins into host cells that subvert signaling pathways controlling membrane transport. These bacterial effectors modulate the function of proteins that regulate membrane transport and alter the phospholipid content of membranes. Elucidating the biochemical function of these effectors has provided a greater understanding of how bacteria control membrane transport to create a replicative niche within the host and provided insight into the regulation of membrane transport in eukaryotic cells.


Asunto(s)
Infecciones Bacterianas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Proteínas de Transporte de Membrana/metabolismo , Vacuolas/metabolismo , Animales , Bacterias/metabolismo , Sistemas de Secreción Bacterianos , Transporte Biológico , Membrana Celular/química , Membrana Celular/metabolismo , GTP Fosfohidrolasas/metabolismo , Humanos , Fagosomas/metabolismo , Fagosomas/microbiología , Fosfolípidos/análisis , Fosfolípidos/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA