Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(15): 4362-4368, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38488060

RESUMEN

Environmentally friendly, ultrafast display pixels of micrometer sizes are fabricated with nanometer-thick gold films and Si/SiO2 wafers. The color displayed is due to both the plasmon response of the gold film and the optical interference from the Fabry-Peerot cavity formed by the underlying silicon substrate, the semitransparent gold film and the air gap between them. When an electric potential is applied to the gold film, the electrostatic force induces an attraction between the gold film and the silicon wafer. Due to the flexibility of the film, the size of the air gap changes, resulting in a changing color. By applying different driving signals, we have achieved cyan, magenta, and yellow reflected colors. The maximum switching rate of the pixel is primarily determined by the thickness dependence of the metal drum and its Young's modulus and is typically in the MHz regime.

2.
Small ; 20(6): e2307242, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37771206

RESUMEN

Photovoltaic thin film solar cells based on kesterite Cu2 ZnSn(S, Se)4 (CZTSSe) have reached 13.8% sunlight-to-electricity conversion efficiency. However, this efficiency is still far from the Shockley-Queisser radiative limit and is hindered by the significant deficit in open circuit voltage (VOC ). The presence of high-density interface states between the absorber layer and buffer or window layer leads to the recombination of photogenerated carriers, thereby reducing effective carrier collection. To tackle this issue, a new window structure ZnO/AgNW/ZnO/AgNW (ZAZA) comprising layers of ZnO and silver nanowires (AgNWs) is proposed. This structure offers a simple and low-damage processing method, resulting in improved optoelectronic properties and junction quality. The ZAZA-based devices exhibit enhanced VOC due to the higher built-in voltage (Vbi ) and reduced interface recombination compared to the usual indium tin oxide (ITO) based structures. Additionally, improved carrier collection is demonstrated as a result of the shortened collection paths and the more uniform carrier lifetime distribution. These advances enable the fabrication of the first ITO-free CZTSSe solar cells with over 10% efficiency without an anti-reflective coating.

3.
Small ; 20(27): e2307807, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38342673

RESUMEN

Sodium (Na) doping is a well-established technique employed in chalcopyrite and kesterite solar cells. While various improvements can be achieved in crystalline quality, electrical properties, or defect passivation of the absorber materials by incorporating Na, a comprehensive demonstration of the desired Na distribution in CZTSSe is still lacking. Herein, a straightforward Na doping approach by dissolving NaCl into the CZTS precursor solution is proposed. It is demonstrated that a favorable Na ion distribution should comprise a precisely controlled Na+ concentration at the front surface and an enhanced distribution within the bottom region of the absorber layer. These findings demonstrated that Na ions play several positive roles within the device, leading to an overall power conversion efficiency of 12.51%.

4.
Langmuir ; 40(6): 2783-2791, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38299884

RESUMEN

The controlled assembly of colloid particles on a solid substrate has always been a major challenge in colloid and surface science. Here we provide an overview of electrophoretic deposition (EPD) of single charge-stabilized nanoparticles. We demonstrate that surface templated EPD (STEPD) assembly, which combines EPD with top-down nanofabrication, allows a wide range of nanoparticles to be built up into arbitrary structures with high speed, scalability, and excellent fidelity. We will also discuss some of the current colloid chemical limitations and challenges in STEPD assembly for sub-10 nm nanoparticles and for the fabrication of densely packed single particle arrays.

5.
Nano Lett ; 23(20): 9287-9294, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37811888

RESUMEN

A non-empirical equation describing the effect of size on the temperature dependence of the optical bandgap of CdS (dEg/dT) is obtained on the basis of the Brus equation. Intriguingly, we find that dEg/dT diverges strongly from bulk values only within the "extreme confinement" (EC) regime. We conducted both experimental and theoretical investigations of the absorption spectra of CdS clusters and quantum dots as a function of temperature above room temperature. Our results show that the value of dEg/dT obtained from absorption spectra in the EC regime is 2.5 times higher than in the strong confinement regime. Notable ligand sensitivities are also observed for dEg/dT in the case of CdS clusters. Ab initio molecular dynamics simulations and density functional theory calculations reveal that thermal fluctuations are the crucial factor influencing the bandgap temperature coefficient. Our results help resolve some long-standing debates regarding the dEg/dT behavior of semiconductor quantum dots.

6.
Nano Lett ; 23(11): 4923-4930, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37252845

RESUMEN

Field-effect phototransistors feature gate voltage modulation, allowing dynamic performance control and significant signal amplification. A field-effect phototransistor can be designed to be inherently either unipolar or ambipolar in its response. However, conventionally, once a field-effect phototransistor has been fabricated, its polarity cannot be changed. Herein, a polarity-tunable field-effect phototransistor based on a graphene/ultrathin Al2O3/Si structure is demonstrated. Light can modulate the gating effect of the device and change the transfer characteristic curve from unipolar to ambipolar. This photoswitching in turn produces a significantly improved photocurrent signal. The introduction of an ultrathin Al2O3 interlayer also enables the phototransistor to achieve a responsivity in excess of 105 A/W, a 3 dB bandwidth of 100 kHz, a gain-bandwidth product of 9.14 × 1010 s-1, and a specific detectivity of 1.91 × 1013 Jones. This device architecture enables the gain-bandwidth trade-off in current field-effect phototransistors to be overcome, demonstrating the feasibility of simultaneous high-gain and fast-response photodetection.

7.
J Chem Phys ; 158(17)2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37129143

RESUMEN

The absorption spectra of congenetic wurtzite (WZ) and zincblende (ZB) CdS magic-sized clusters are investigated. We demonstrate that the exciton peak positions can be tuned by up to 500 meV by varying the strong coupling between X-type ligands and the semiconductor cores, while the addition of L-type ligands primarily affects cluster midgap states. When Z-type ligands are displaced by L-type ligands, red shifts in the absorption spectra are observed, despite the fact there is a small decrease in cluster size. Density functional theory calculations are used to explain these findings and they reveal the importance of Cd and S dangling bonds on the midgap states during the Z- to L-type ligand exchange process. Overall, ZB CdS clusters show higher chemical stability than WZ clusters but their optical properties exhibit greater sensitivity to the solvent. Conversely, WZ CdS clusters are not stable in a Lewis base-rich environment, resulting in various changes in their spectra. Our findings enable researchers to select capping ligands that modulate the optical properties of semiconductor clusters while maintaining precise control over their solvent interactions.

8.
Soft Matter ; 18(4): 807-825, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-34939641

RESUMEN

Thermoresponsive microgels undergo a volume phase transition from a swollen state under good solvent conditions to a collapsed state under poor solvent conditions. The most prominent examples of such responsive systems are based on poly-(N-isopropylacrylamide). When cross-linked with N,N'-methylenebisacrylamide, such microgels typically possess a fuzzy-spherelike morphology with a higher cross-linked core and a loosely cross-linked fuzzy shell. Despite the efforts devoted to understanding the internal structure of microgels and their kinetics during collapse/swelling, the origins of the accompanying changes in light scattering intensity have barely been addressed. In this work, we study core-shell microgels that contain small gold nanoparticle cores with microgel shells of different thicknesses and cross-linker densities. All microgels are small enough to fulfill the Rayleigh-Debye-Gans criterion at all stages of swelling. Due to the high X-ray contrast of the gold cores, we can use absolute intensity small-angle X-ray scattering to determine the number density in the dilute dispersions. This allows us to extract polymer volume fractions of the microgels at different stages of swelling from form factor analysis of small-angle neutron scattering data. We match our findings to results from temperature-dependent absorbance measurements. The increase in absorbance during the shrinkage of the microgels is related to the transition from fuzzy spheres to hard sphere-like scattering objects with a rather homogeneous density profile. We provide a first attempt to model experimental spectra using finite difference time domain simulations that take into account the structural changes during the volume phase transition. Our findings significantly contribute to the understanding of the optical properties of thermoresponsive microgels. Further, we provide polymer volume fractions and microgel refractive indices as a function of the swelling state.

9.
Langmuir ; 36(45): 13601-13612, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33147412

RESUMEN

Surface lattice resonances are optical resonances composed of hybridized plasmonic and diffractive modes. These collective resonances occur in periodic arrays of plasmonic nanoparticles with wavelength-scale interparticle distances. The appearance and strength of surface lattice resonances strongly depend on the single particle localized surface plasmon resonance and its spectral overlap with the diffractive modes of the array. Coupling to in-plane orders of diffraction is also strongly affected by the refractive index environment and its symmetry. In this work, we address the impact of the interparticle distance, the symmetry of the refractive index environment, and structural imperfections in self-assembled colloidal monolayers on the plasmonic-diffractive coupling. For this purpose, we prepared hexagonally ordered, nonclose packed monolayers of gold nanoparticles using a fast and efficient, interface-mediated, colloidal self-assembly approach. By tuning the thickness and deformability of the polymer shells, we were able to prepare monolayers with a broad range of interparticle distances. The optical properties of the samples were studied experimentally by UV-Vis spectroscopy and theoretically by finite difference time domain simulations. The measured and simulated spectra allow a comprehensive analysis of the details of electromagnetic coupling in periodic plasmonic arrays. In particular, we identify relevant criteria required for surface lattice resonances in the visible wavelength range with optimized quality factors in self-assembled monolayers.

10.
Macromol Rapid Commun ; 41(1): e1900415, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31782585

RESUMEN

Anti-reflective surfaces are of great interest for optical devices, sensing, photovoltaics, and photocatalysis. However, most of the anti-reflective surfaces lack in situ tunability of the extinction with respect to wavelength. This communication demonstrates a tunable anti-reflective surface based on colloidal particles comprising a metal core with an electrochromic polymer shell. Random deposition of these particles on a reflective surface results in a decrease in the reflectance of up to 99.8% at the localized surface plasmon resonance frequency. This narrow band feature can be tuned by varying the pH or by application of an electric potential, resulting in wavelength shifts of up to 30 nm. Electrophoretic particle deposition is shown to be an efficient method for controlling the interparticle distance and thereby further optimizing the overall efficiency of the anti-reflective metasurface.


Asunto(s)
Metales/química , Polímeros/química , Compuestos de Anilina/química , Oro/química , Concentración de Iones de Hidrógeno , Nanopartículas del Metal/química , Tamaño de la Partícula , Resonancia por Plasmón de Superficie
11.
Langmuir ; 35(26): 8776-8783, 2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31177782

RESUMEN

Noble metal nanoparticles show pronounced extinction peaks in the visible wavelength range due to their localized surface plasmon resonances. The excitation of these resonances leads to strong confinement of electromagnetic energy at nanometer scales, which is critical for ultrasensitive, fluorescence-based detection of analytes. The strength and spatial distribution of this near-field zone depend on particle size, shape, and composition. To determine how these near-field effects depend on the particle size, we have prepared nanoparticle gradients on centimeter-scale substrates using a colloid-based approach. This plasmonic gradient is used to study the steady-state emission and fluorescence lifetime of a common organic dye that was embedded into the monolayer.

12.
Nano Lett ; 18(2): 1010-1017, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29302972

RESUMEN

The photoluminescence of single quantum dots fluctuates between bright (on) and dark (off) states, also termed fluorescence intermittency or blinking. This blinking limits the performance of quantum dot-based devices such as light-emitting diodes and solar cells. However, the origins of the blinking remain unresolved. Here, we use a movable gold micromirror to determine both the quantum yield of the bright state and the orientation of the excited state dipole of single quantum dots. We observe that the quantum yield of the bright state is close to unity for these single QDs. Furthermore, we also study the effect of a micromirror on blinking, and then evaluate excitation efficiency, biexciton quantum yield, and detection efficiency. The mirror does not modify the off-time statistics, but it does change the density of optical states available to the quantum dot and hence the on times. The duration of the on times can be lengthened due to an increase in the radiative recombination rate.

13.
Acc Chem Res ; 50(12): 2925-2935, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29144733

RESUMEN

The phenomenon of symmetry breaking-in which the order of symmetry of a system is reduced despite manifest higher-order symmetry in the underlying fundamental laws-is pervasive throughout science and nature, playing a critical role in fields ranging from particle physics and quantum theory to cosmology and general relativity. For the growth of crystals, symmetry breaking is the crucial step required to generate a macroscopic shape that has fewer symmetry elements than the unit cell and/or seed crystal from which it grew. Advances in colloid synthesis have enabled a wide variety of nanocrystal morphologies to be achieved, albeit empirically. Of the various nanoparticle morphologies synthesized, gold nanorods have perhaps been the most intensely studied, thanks largely to their unique morphology-dependent optical properties and exciting application potential. However, despite intense research efforts, an understanding of the mechanism by which a single crystal breaks symmetry and grows anisotropically has remained elusive, with many reports presenting seemingly conflicting data and theories. A fundamental understanding of the symmetry breaking process is needed to provide a rational framework upon which future synthetic approaches can be built. Inspired by recent experimental results and drawing upon the wider literature, we present a mechanism for gold nanorod growth from the moments prior to symmetry breaking to the final product. In particular, we describe the steps by which a cuboctahedral seed particle breaks symmetry and undergoes anisotropic growth to form a nanorod. With an emphasis on the evolving crystal structure, we highlight the key geometrical and chemical drivers behind the symmetry breaking process and factors that govern the formation and growth of nanorods, including control over the crystal width, length, and surface faceting. We propose that symmetry breaking is induced by an initial formation of a new surface structure that is stabilized by the deposition of silver, thus preserving this facet in the embryonic nanorod. These new surfaces initially form stochastically as truncations that remove high-energy edge atoms at the intersection of existing {111} facets and represent the beginnings of a {011}-type surface. Crucially, the finely tuned [HAuCl4]:[AgNO3] ratio and reduction potential of the system mean that silver deposition can occur on the more atomically open surface but not on the pre-existing lower-index facets. The stabilized surfaces develop into side facets of the nascent nanorod, while the largely unpassivated {111} facets are the predominant site of Au atom deposition. Growth in the width direction is tightly controlled by a self-sustaining cycle of galvanic replacement and silver deposition. It is the [HAuCl4]:[AgNO3] ratio that directly determines the particle size at which the more open atomic surfaces can be stabilized by silver and the rate of growth in the width direction following symmetry breaking, thus explaining the known aspect ratio control with Ag ion concentration. We describe the evolving surface faceting of the nanorod and the emergence of higher-index facets. Collectively, these observations allow us to identify facet-size and edge-atom effects as a simple fundamental driver of symmetry breaking and the subsequent development of new surfaces in the presence of adsorbates.

14.
Langmuir ; 34(43): 12982-12989, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30299970

RESUMEN

Inorganic nanoparticle cores are often coated with organic ligands to render them dispersible in apolar solvents. However, the effect of the ligand shell on the colloidal stability of the overall hybrid particle is not fully understood. In particular, it is not known how the length of an apolar alkyl ligand chain affects the stability of a nanoparticle dispersion against agglomeration. Here, small-angle X-ray scattering and molecular dynamics simulations have been used to study the interactions between gold nanoparticles and between cadmium selenide nanoparticles passivated by alkanethiol ligands with 12-18 carbons in the solvent decane. We find that increasing the ligand length increases colloidal stability in the core-dominated regime but decreases it in the ligand-dominated regime. This unexpected inversion is connected to the transition from ligand-dominated to core-dominated agglomeration when the core diameter increases at constant ligand length. Our results provide a microscopic picture of the forces that determine the colloidal stability of apolar nanoparticles and explain why classical colloid theory fails.

15.
Langmuir ; 34(4): 1655-1665, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29294286

RESUMEN

Copper zinc tin sulfide (CZTS) nanocrystal inks are promising candidates for the development of cheap, efficient, scalable, and nontoxic photovoltaic (PV) devices. However, optimization of the synthetic chemistry to achieve these goals remains a key challenge. Herein we describe a single-step, aqueous-based synthesis that yields high-quality CZTS nanocrystal inks while also minimizing residual organic impurities. By exploiting simultaneous redox and crystal formation reactions, square-platelet-like CZTS nanocrystals stabilized by Sn2S64- and thiourea are produced. The CZTS synthesis is optimized by using a combination of inductively coupled plasma analysis, Raman spectroscopy, Fourier transform infrared spectroscopy, and synchrotron powder X-ray diffraction to assess the versatility of the synthesis and identify suitable composition ranges for achieving phase-pure CZTS. It is found that mild heat treatment between 185 and 220 °C is most suitable for achieving this because this temperature range is sufficiently high to thermalize existing ligands and ink additives while minimizing tin loss, which is problematic at higher temperatures. The low temperatures required to process these nanocrystal inks to give CZTS thin films are readily amenable to production-scale processes.

16.
Langmuir ; 34(25): 7355-7363, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29806979

RESUMEN

The assembly of nanoscale materials into arbitrary, organized structures remains a major challenge in nanotechnology. Herein, we report a general method for creating 2D structures by combining top-down lithography with bottom-up chemical assembly. Under optimal conditions, the assembly of gold nanoparticles was achieved in less than 30 min. Single gold nanoparticles, from 10 to 100 nm, can be placed in predetermined patterns with high fidelity, and higher-order structures can be generated consisting of dimers or trimers. It is shown that the nanoparticle arrays can be transferred to, and embedded within, polymer films. This provides a new method for the large-scale fabrication of nanoparticle arrays onto diverse substrates using wet chemistry.

17.
Nano Lett ; 16(6): 3817-23, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27164410

RESUMEN

We demonstrate a new plasmonic pixel (PP) design that produces a full-color optical response over macroscopic dimensions. The pixel design employs arrays of aluminum nanorods "floating" above their Babinet complementary screen, Concepts from conventional cyan magenta yellow key (CMYK) printing techniques and red green blue (RGB) digital displays are integrated with nanophotonic design principles and adapted to the production of PP elements. The fundamental PP color blocks of CMYK are implemented via a composite plasmonic nanoantenna/slot design and then mixed in a digital display analog 3 × 3 array to produce a broad-gamut PP. The PP goes beyond current investigations into plasmonic color production by enabling a broad color gamut and physically large plasmonic color features/devices/images. The use of nanorods also leads to a color response that is polarization tunable. Furthermore, devices are fabricated using aluminum and the fabrication strategy is compatible with inexpensive, rapid-throughput, nanoimprint approaches. Here we quantify, both computationally and experimentally, the performance of the PP. Spectral data from a test palette is obtained and a large area (>1.5 cm lateral dimensions) reproduction of a photograph is generated exemplifying the technqiue.

18.
Nano Lett ; 16(11): 6863-6869, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27700110

RESUMEN

A reliable and reproducible method to rapidly charge single gold nanocrystals in a solid-state device is reported. Gold nanorods (Au NRs) were integrated into an ion gel capacitor, enabling them to be charged in a transparent and highly capacitive device, ideal for optical transmission. Changes in the electron concentration of a single Au NR were observed with dark-field imaging spectroscopy via localized surface plasmon resonance (LSPR) shifts in the scattering spectrum. A time-resolved, laser-illuminated, dark-field system was developed to enable direct measurement of single particle charging rates with time resolution below one millisecond. The added sensitivity of this new approach has enabled the optical detection of fewer than 110 electrons on a single Au NR. Single wavelength resonance shifts provide a much faster, more sensitive method for all surface plasmon-based sensing applications.

19.
Nano Lett ; 16(1): 326-33, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26709529

RESUMEN

Quantum sensors based on solid-state spins provide tremendous opportunities in a wide range of fields from basic physics and chemistry to biomedical imaging. However, integrating them into a scanning probe microscope to enable practical, nanoscale quantum imaging is a highly challenging task. Recently, the use of single spins in diamond in conjunction with atomic force microscopy techniques has allowed significant progress toward this goal, but generalization of this approach has so far been impeded by long acquisition times or by the absence of simultaneous topographic information. Here, we report on a scanning quantum probe microscope which solves both issues by employing a nanospin ensemble hosted in a nanodiamond. This approach provides up to an order of magnitude gain in acquisition time while preserving sub-100 nm spatial resolution both for the quantum sensor and topographic images. We demonstrate two applications of this microscope. We first image nanoscale clusters of maghemite particles through both spin resonance spectroscopy and spin relaxometry, under ambient conditions. Our images reveal fast magnetic field fluctuations in addition to a static component, indicating the presence of both superparamagnetic and ferromagnetic particles. We next demonstrate a new imaging modality where the nanospin ensemble is used as a thermometer. We use this technique to map the photoinduced heating generated by laser irradiation of a single gold nanoparticle in a fluid environment. This work paves the way toward new applications of quantum probe microscopy such as thermal/magnetic imaging of operating microelectronic devices and magnetic detection of ion channels in cell membranes.


Asunto(s)
Nanopartículas de Magnetita/química , Imagen Molecular , Nanodiamantes/química , Nanotecnología , Compuestos Férricos/química , Oro/química , Microscopía de Fuerza Atómica
20.
Langmuir ; 32(47): 12497-12503, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27778508

RESUMEN

Hydrophobic forces play a key role in the processes of collapse and reswelling of thermoresponsive polymers. However, little is known about the dynamics of these processes. Here, thermoresponsive poly(N-isopropylacrylamide)-encapsulated gold nanoparticles (Au-PNIPAM) are heated via nanosecond laser flash photolysis. Photothermal heating via excitation of the localized surface plasmon resonance of the Au nanoparticle cores results in rapid PNIPAM shell collapse within the 10 ns pulse width of the laser. Remarkably, reswelling of the polymer shell takes place in less than 100 ns. A clear pump fluence threshold for the collapse of the PNIPAM shell is demonstrated, below which collapse is not observed. Reswelling takes longer at higher laser intensities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA