Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(8): 105001, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37394006

RESUMEN

NADH-ubiquinone (UQ) oxidoreductase (complex I) couples electron transfer from NADH to UQ with proton translocation in its membrane part. The UQ reduction step is key to triggering proton translocation. Structural studies have identified a long, narrow, tunnel-like cavity within complex I, through which UQ may access a deep reaction site. To elucidate the physiological relevance of this UQ-accessing tunnel, we previously investigated whether a series of oversized UQs (OS-UQs), whose tail moiety is too large to enter and transit the narrow tunnel, can be catalytically reduced by complex I using the native enzyme in bovine heart submitochondrial particles (SMPs) and the isolated enzyme reconstituted into liposomes. Nevertheless, the physiological relevance remained unclear because some amphiphilic OS-UQs were reduced in SMPs but not in proteoliposomes, and investigation of extremely hydrophobic OS-UQs was not possible in SMPs. To uniformly assess the electron transfer activities of all OS-UQs with the native complex I, here we present a new assay system using SMPs, which were fused with liposomes incorporating OS-UQ and supplemented with a parasitic quinol oxidase to recycle reduced OS-UQ. In this system, all OS-UQs tested were reduced by the native enzyme, and the reduction was coupled with proton translocation. This finding does not support the canonical tunnel model. We propose that the UQ reaction cavity is flexibly open in the native enzyme to allow OS-UQs to access the reaction site, but their access is obstructed in the isolated enzyme as the cavity is altered by detergent-solubilizing from the mitochondrial membrane.


Asunto(s)
Complejo I de Transporte de Electrón , Ubiquinona , Animales , Bovinos , Ubiquinona/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Membranas Mitocondriales/metabolismo , NAD/metabolismo , Protones , Liposomas
2.
J Biol Chem ; 298(7): 102075, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35643318

RESUMEN

The ubiquinone (UQ) reduction step catalyzed by NADH-UQ oxidoreductase (mitochondrial respiratory complex I) is key to triggering proton translocation across the inner mitochondrial membrane. Structural studies have identified a long, narrow, UQ-accessing tunnel within the enzyme. We previously demonstrated that synthetic oversized UQs, which are unlikely to transit this narrow tunnel, are catalytically reduced by native complex I embedded in submitochondrial particles but not by the isolated enzyme. To explain this contradiction, we hypothesized that access of oversized UQs to the reaction site is obstructed in the isolated enzyme because their access route is altered following detergent solubilization from the inner mitochondrial membrane. In the present study, we investigated this using two pairs of photoreactive UQs (pUQm-1/pUQp-1 and pUQm-2/pUQp-2), with each pair having the same chemical properties except for a ∼1.0 Å difference in side-chain widths. Despite this subtle difference, reduction of the wider pUQs by the isolated complex was significantly slower than of the narrower pUQs, but both were similarly reduced by the native enzyme. In addition, photoaffinity-labeling experiments using the four [125I]pUQs demonstrated that their side chains predominantly label the ND1 subunit with both enzymes but at different regions around the tunnel. Finally, we show that the suppressive effects of different types of inhibitors on the labeling significantly changed depending on [125I]pUQs used, indicating that [125I]pUQs and these inhibitors do not necessarily share a common binding cavity. Altogether, we conclude that the reaction behaviors of pUQs cannot be simply explained by the canonical UQ tunnel model.


Asunto(s)
Complejo I de Transporte de Electrón , Ubiquinona , Sitios de Unión , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Partículas Submitocóndricas/metabolismo , Ubiquinona/metabolismo
3.
J Biol Chem ; 298(3): 101602, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35063503

RESUMEN

Mitochondrial complex I (NADH:ubiquinone oxidoreductase), a crucial enzyme in energy metabolism, captures the redox potential energy from NADH oxidation/ubiquinone reduction to create the proton motive force used to drive ATP synthesis in oxidative phosphorylation. High-resolution single-particle electron cryo-EM analyses have provided detailed structural knowledge of the catalytic machinery of complex I, but not of the molecular principles of its energy transduction mechanism. Although ubiquinone is considered to bind in a long channel at the interface of the membrane-embedded and hydrophilic domains, with channel residues likely involved in coupling substrate reduction to proton translocation, no structures with the channel fully occupied have yet been described. Here, we report the structure (determined by cryo-EM) of mouse complex I with a tight-binding natural product acetogenin inhibitor, which resembles the native substrate, bound along the full length of the expected ubiquinone-binding channel. Our structure reveals the mode of acetogenin binding and the molecular basis for structure-activity relationships within the acetogenin family. It also shows that acetogenins are such potent inhibitors because they are highly hydrophobic molecules that contain two specific hydrophilic moieties spaced to lock into two hydrophilic regions of the otherwise hydrophobic channel. The central hydrophilic section of the channel does not favor binding of the isoprenoid chain when the native substrate is fully bound but stabilizes the ubiquinone/ubiquinol headgroup as it transits to/from the active site. Therefore, the amphipathic nature of the channel supports both tight binding of the amphipathic inhibitor and rapid exchange of the ubiquinone/ubiquinol substrate and product.


Asunto(s)
Acetogeninas , Complejo I de Transporte de Electrón , Acetogeninas/antagonistas & inhibidores , Acetogeninas/metabolismo , Acetogeninas/farmacología , Animales , Microscopía por Crioelectrón , Complejo I de Transporte de Electrón/metabolismo , Ratones , NAD/metabolismo , Oxidación-Reducción , Relación Estructura-Actividad , Ubiquinona/metabolismo
4.
Biochemistry ; 60(10): 813-824, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33650850

RESUMEN

The ubiquinone reduction step in NADH-ubiquinone oxidoreductase (complex I) is the key to triggering proton translocation in its membrane part. Although the existence of a long and narrow quinone-access channel has been identified, it remains debatable whether the channel model can account for binding of various ligands (ubiquinones and inhibitors) to the enzyme. We previously proposed that the matrix-side interfacial region of the 49 kDa, ND1, PSST, and 39 kDa subunits, which is covered by a loop connecting transmembrane helices (TMHs) 1 and 2 of ND3, may be the area for entry of some bulky ligands into the quinone reaction cavity. However, this proposition lacks direct evidence that the cavity is accessible from the putative matrix-side region, which allows ligands to pass. To address this, we examined whether Cys39 of ND3 and Asp160 of 49 kDa can be specifically cross-linked by bifunctional cross-linkers (tetrazine-maleimide hybrid, named TMBC). On the basis of the structural models of complex I, such dual cross-linking is unexpected because ND3 Cys39 and 49 kDa Asp160 are located on the TMH1-2 loop and deep inside the channel, respectively, and hence, they are physically separated by peptide chains forming the channel wall. However, three TMBCs with different spacer lengths did cross-link the two residues, resulting in the formation of new cross-linked ND3/49 kDa subunits. Chemical modification of either ND3 Cys39 or 49 kDa Asp160 blocked the dual cross-linking, ensuring the specificity of the cross-linking. Altogether, this study provides direct evidence that the quinone reaction cavity is indeed accessible from the proposed matrix-side region covered by the ND3 TMH1-2 loop.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias Cardíacas/metabolismo , Ubiquinona/metabolismo , Animales , Sitios de Unión , Dominio Catalítico , Bovinos , Transporte de Electrón , Ligandos , Conformación Proteica , Subunidades de Proteína , Protones
5.
J Biol Chem ; 295(21): 7481-7491, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32295842

RESUMEN

The small molecule IACS-010759 has been reported to potently inhibit the proliferation of glycolysis-deficient hypoxic tumor cells by interfering with the functions of mitochondrial NADH-ubiquinone oxidoreductase (complex I) without exhibiting cytotoxicity at tolerated doses in normal cells. Considering the significant cytotoxicity of conventional quinone-site inhibitors of complex I, such as piericidin and acetogenin families, we hypothesized that the mechanism of action of IACS-010759 on complex I differs from that of other known quinone-site inhibitors. To test this possibility, here we investigated IACS-010759's mechanism in bovine heart submitochondrial particles. We found that IACS-010759, like known quinone-site inhibitors, suppresses chemical modification by the tosyl reagent AL1 of Asp160 in the 49-kDa subunit, located deep in the interior of a previously proposed quinone-access channel. However, contrary to the other inhibitors, IACS-010759 direction-dependently inhibited forward and reverse electron transfer and did not suppress binding of the quinazoline-type inhibitor [125I]AzQ to the N terminus of the 49-kDa subunit. Photoaffinity labeling experiments revealed that the photoreactive derivative [125I]IACS-010759-PD1 binds to the middle of the membrane subunit ND1 and that inhibitors that bind to the 49-kDa or PSST subunit cannot suppress the binding. We conclude that IACS-010759's binding location in complex I differs from that of any other known inhibitor of the enzyme. Our findings, along with those from previous study, reveal that the mechanisms of action of complex I inhibitors with widely different chemical properties are more diverse than can be accounted for by the quinone-access channel model proposed by structural biology studies.


Asunto(s)
Complejo I de Transporte de Electrón/antagonistas & inhibidores , Glucólisis/efectos de los fármacos , Mitocondrias Cardíacas/enzimología , Proteínas de Neoplasias/antagonistas & inhibidores , Neoplasias/metabolismo , Oxadiazoles/farmacología , Piperidinas/farmacología , Animales , Bovinos , Hipoxia de la Célula/efectos de los fármacos , Complejo I de Transporte de Electrón/metabolismo , Humanos , Mitocondrias Cardíacas/patología , Proteínas de Neoplasias/metabolismo , Neoplasias/patología
6.
J Biol Chem ; 295(36): 12739-12754, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32690607

RESUMEN

The Na+-pumping NADH-ubiquinone (UQ) oxidoreductase (Na+-NQR) is present in the respiratory chain of many pathogenic bacteria and is thought to be a promising antibiotic target. Whereas many details of Na+-NQR structure and function are known, the mechanisms of action of potent inhibitors is not well-understood; elucidating the mechanisms would not only advance drug design strategies but might also provide insights on a terminal electron transfer from riboflavin to UQ. To this end, we performed photoaffinity labeling experiments using photoreactive derivatives of two known inhibitors, aurachin and korormicin, on isolated Vibrio cholerae Na+-NQR. The inhibitors labeled the cytoplasmic surface domain of the NqrB subunit including a protruding N-terminal stretch, which may be critical to regulate the UQ reaction in the adjacent NqrA subunit. The labeling was blocked by short-chain UQs such as ubiquinone-2. The photolabile group (2-aryl-5-carboxytetrazole (ACT)) of these inhibitors reacts with nucleophilic amino acids, so we tested mutations of nucleophilic residues in the labeled region of NqrB, such as Asp49 and Asp52 (to Ala), and observed moderate decreases in labeling yields, suggesting that these residues are involved in the interaction with ACT. We conclude that the inhibitors interfere with the UQ reaction in two ways: the first is blocking structural rearrangements at the cytoplasmic interface between NqrA and NqrB, and the second is the direct obstruction of UQ binding at this interfacial area. Unusual competitive behavior between the photoreactive inhibitors and various competitors corroborates our previous proposition that there may be two inhibitor binding sites in Na+-NQR.


Asunto(s)
Proteínas Bacterianas/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Ubiquinona/metabolismo , Vibrio cholerae/metabolismo , Proteínas Bacterianas/genética , NADH NADPH Oxidorreductasas/genética , Ubiquinona/genética , Vibrio cholerae/genética
7.
J Biol Chem ; 295(8): 2449-2463, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31953326

RESUMEN

NADH-quinone oxidoreductase (complex I) couples electron transfer from NADH to quinone with proton translocation across the membrane. Quinone reduction is a key step for energy transmission from the site of quinone reduction to the remotely located proton-pumping machinery of the enzyme. Although structural biology studies have proposed the existence of a long and narrow quinone-access channel, the physiological relevance of this channel remains debatable. We investigated here whether complex I in bovine heart submitochondrial particles (SMPs) can catalytically reduce a series of oversized ubiquinones (OS-UQs), which are highly unlikely to transit the narrow channel because their side chain includes a bulky "block" that is ∼13 Šacross. We found that some OS-UQs function as efficient electron acceptors from complex I, accepting electrons with an efficiency comparable with ubiquinone-2. The catalytic reduction and proton translocation coupled with this reduction were completely inhibited by different quinone-site inhibitors, indicating that the reduction of OS-UQs takes place at the physiological reaction site for ubiquinone. Notably, the proton-translocating efficiencies of OS-UQs significantly varied depending on their side-chain structures, suggesting that the reaction characteristics of OS-UQs affect the predicted structural changes of the quinone reaction site required for triggering proton translocation. These results are difficult to reconcile with the current channel model; rather, the access path for ubiquinone may be open to allow OS-UQs to access the reaction site. Nevertheless, contrary to the observations in SMPs, OS-UQs were not catalytically reduced by isolated complex I reconstituted into liposomes. We discuss possible reasons for these contradictory results.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Mitocondrias Cardíacas/metabolismo , Sondas Moleculares/metabolismo , Ubiquinona/química , Ubiquinona/metabolismo , Alquinos/metabolismo , Animales , Bovinos , Simulación por Computador , Transporte de Electrón , Potencial de la Membrana Mitocondrial , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , NAD/metabolismo , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Subunidades de Proteína/metabolismo , Proteolípidos/metabolismo , Protones , Partículas Submitocóndricas/metabolismo
8.
Biosci Biotechnol Biochem ; 85(12): 2368-2377, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34625801

RESUMEN

The mitochondrial machineries presiding over ATP synthesis via oxidative phosphorylation are promising druggable targets. Fusaramin, a 3-acyl tetramic acid isolated from Fusarium concentricum FKI-7550, is an inhibitor of oxidative phosphorylation in Saccharomyces cerevisiae mitochondria, although its target has yet to be identified. Fusaramin significantly interfered with [3H]ADP uptake by yeast mitochondria at the concentration range inhibiting oxidative phosphorylation. A photoreactive fusaramin derivative (pFS-5) specifically labeled voltage-dependent anion channel 1 (VDAC1), which facilitates trafficking of ADP/ATP across the outer mitochondrial membrane. These results strongly suggest that the inhibition of oxidative phosphorylation by fusaramin is predominantly attributable to the impairment of VDAC1 functions. Fusaramin also inhibited FoF1-ATP synthase and ubiquinol-cytochrome c oxidoreductase (complex III) at concentrations higher than those required for the VDAC inhibition. Considering that other tetramic acid derivatives are reported to inhibit FoF1-ATP synthase and complex III, natural tetramic acids were found to elicit multiple inhibitory actions against mitochondrial machineries.


Asunto(s)
Fosforilación Oxidativa
9.
J Ind Microbiol Biotechnol ; 48(9-10)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34343309

RESUMEN

Two new tetramic acid derivatives, traminines A (1) and B (2), were isolated from a culture broth of Fusarium concentricum FKI-7550 by bioassay-guided fractionation using multidrug-sensitive Saccharomyces cerevisiae 12geneΔ0HSR-iERG6. The chemical structures of 1 and 2 were elucidated by NMR studies. Compounds 1 and 2 inhibited the growth of the multidrug-sensitive yeast strain on nonfermentable medium containing glycerol, but not on fermentable medium containing glucose. These results strongly suggest that they target mitochondrial machineries presiding over ATP production via oxidative phosphorylation. Throughout the assay monitoring overall ADP-uptake/ATP-release in yeast mitochondria, 1 and 2 were shown to inhibit one or more enzymes involving oxidative phosphorylation. Based on biochemical characterization, we found that the interference with oxidative phosphorylation by 1 is attributable to the dual inhibition of complex III and FoF1-ATPase, whereas that by 2 is solely due to the inhibition of complex III.


Asunto(s)
Fusarium , Saccharomyces cerevisiae , Mitocondrias/metabolismo , Fosforilación Oxidativa
10.
J Biol Chem ; 294(2): 679-696, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30425100

RESUMEN

NADH-quinone oxidoreductase (respiratory complex I) couples NADH-to-quinone electron transfer to the translocation of protons across the membrane. Even though the architecture of the quinone-access channel in the enzyme has been modeled by X-ray crystallography and cryo-EM, conflicting findings raise the question whether the models fully reflect physiologically relevant states present throughout the catalytic cycle. To gain further insights into the structural features of the binding pocket for quinone/inhibitor, we performed chemical biology experiments using bovine heart sub-mitochondrial particles. We synthesized ubiquinones that are oversized (SF-UQs) or lipid-like (PC-UQs) and are highly unlikely to enter and transit the predicted narrow channel. We found that SF-UQs and PC-UQs can be catalytically reduced by complex I, albeit only at moderate or low rates. Moreover, quinone-site inhibitors completely blocked the catalytic reduction and the membrane potential formation coupled to this reduction. Photoaffinity-labeling experiments revealed that amiloride-type inhibitors bind to the interfacial domain of multiple core subunits (49 kDa, ND1, and PSST) and the 39-kDa supernumerary subunit, although the latter does not make up the channel cavity in the current models. The binding of amilorides to the multiple target subunits was remarkably suppressed by other quinone-site inhibitors and SF-UQs. Taken together, the present results are difficult to reconcile with the current channel models. On the basis of comprehensive interpretations of the present results and of previous findings, we discuss the physiological relevance of these models.


Asunto(s)
Amilorida/química , Benzoquinonas/química , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Amilorida/síntesis química , Amilorida/metabolismo , Animales , Benzoquinonas/metabolismo , Sitios de Unión , Catálisis , Bovinos , Cristalografía por Rayos X , Transporte de Electrón , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo I de Transporte de Electrón/genética , Cinética , Mitocondrias/química , Mitocondrias/genética , Etiquetas de Fotoafinidad , Quinona Reductasas/química , Quinona Reductasas/genética , Quinona Reductasas/metabolismo , Ubiquinona/química , Ubiquinona/metabolismo
11.
J Biol Chem ; 294(16): 6550-6561, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-30824536

RESUMEN

Site-specific suppressors of superoxide production (named S1QELs) in the quinone-reaction site in mitochondrial respiratory complex I during reverse electron transfer have been previously reported; however, their mechanism of action remains elusive. Using bovine heart submitochondrial particles, we herein investigated the effects of S1QELs on complex I functions. We found that the inhibitory effects of S1QELs on complex I are distinctly different from those of other known quinone-site inhibitors. For example, the inhibitory potencies of S1QELs significantly varied depending on the direction of electron transfer (forward or reverse). S1QELs marginally suppressed the specific chemical modification of Asp160 in the 49-kDa subunit, located deep in the quinone-binding pocket, by the tosyl chemistry reagent AL1. S1QELs also failed to suppress the binding of a photoreactive quinazoline-type inhibitor ([125I]AzQ) to the 49-kDa subunit. Moreover, a photoaffinity labeling experiment with photoreactive S1QEL derivatives indicated that they bind to a segment in the ND1 subunit that is not considered to make up the binding pocket for quinone or inhibitors. These results indicate that unlike known quinone-site inhibitors, S1QELs do not occupy the quinone- or inhibitor-binding pocket; rather, they may indirectly modulate the quinone-redox reactions by inducing structural changes of the pocket through binding to ND1. We conclude that this indirect effect may be a prerequisite for S1QELs' direction-dependent modulation of electron transfer. This, in turn, may be responsible for the suppression of superoxide production during reverse electron transfer without significantly interfering with forward electron transfer.


Asunto(s)
Complejo I de Transporte de Electrón , Inhibidores Enzimáticos/farmacología , Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales , Superóxidos/metabolismo , Animales , Dominio Catalítico , Bovinos , Transporte de Electrón/efectos de los fármacos , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo I de Transporte de Electrón/metabolismo , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/metabolismo
12.
Biosci Biotechnol Biochem ; 84(7): 1322-1331, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32264779

RESUMEN

NADH-quinone oxidoreductase (respiratory complex I) is a key player in mitochondrial energy metabolism. The enzyme couples electron transfer from NADH to quinone with the translocation of protons across the membrane, providing a major proton-motive force that drives ATP synthesis. Recently, X-ray crystallography and cryo-electron microscopy provided further insights into the structure and functions of the enzyme. However, little is known about the mechanism of quinone reduction, which is a crucial step in the energy coupling process. A variety of complex I inhibitors targeting the quinone-binding site have been indispensable tools for mechanistic studies on the enzyme. Using biorationally designed inhibitor probes, the author has accumulated a large amount of experimental data characterizing the actions of complex I inhibitors. On the basis of comprehensive interpretations of the data, the author reviews the structural features of the binding pocket of quinone/inhibitors in bovine mitochondrial complex I. ABBREVIATIONS: ATP: adenosine triphosphate; BODIPY: boron dipyrromethene; complex I: proton-translocating NADH-quinone oxidoreductase; DIBO: dibenzocyclooctyne; EM: electron microscopy; FeS: iron-sulfur; FMN: flavin adenine mononucleotide; LDT: ligand-directed tosylate; NADH: nicotinamide adenine dinucleotide; ROS: reactive oxygen species; SMP: submitochondrial particle; TAMRA: 6-carboxy-N,N,N',N'-tetramethylrhodamine; THF: tetrahydrofuran; TMH: transmembrane helix.


Asunto(s)
Benzoquinonas/antagonistas & inhibidores , Benzoquinonas/metabolismo , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Acetogeninas/farmacología , Amilorida/farmacología , Animales , Benzoatos/farmacología , Benzoquinonas/química , Sitios de Unión/efectos de los fármacos , Bovinos , Transporte de Electrón , Complejo I de Transporte de Electrón/química , Humanos , Fosforilación Oxidativa , Pirazoles/farmacología , Quinazolinas/farmacología , Especies Reactivas de Oxígeno/metabolismo
13.
J Bacteriol ; 201(11)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30858300

RESUMEN

Korormicin is an antibiotic produced by some pseudoalteromonads which selectively kills Gram-negative bacteria that express the Na+-pumping NADH:quinone oxidoreductase (Na+-NQR.) We show that although korormicin is an inhibitor of Na+-NQR, the antibiotic action is not a direct result of inhibiting enzyme activity. Instead, perturbation of electron transfer inside the enzyme promotes a reaction between O2 and one or more redox cofactors in the enzyme (likely the flavin adenine dinucleotide [FAD] and 2Fe-2S center), leading to the production of reactive oxygen species (ROS). All Pseudoalteromonas contain the nqr operon in their genomes, including Pseudoalteromonas strain J010, which produces korormicin. We present activity data indicating that this strain expresses an active Na+-NQR and that this enzyme is not susceptible to korormicin inhibition. On the basis of our DNA sequence data, we show that the Na+-NQR of Pseudoalteromonas J010 carries an amino acid substitution (NqrB-G141A; Vibrio cholerae numbering) that in other Na+-NQRs confers resistance against korormicin. This is likely the reason that a functional Na+-NQR is able to exist in a bacterium that produces a compound that typically inhibits this enzyme and causes cell death. Korormicin is an effective antibiotic against such pathogens as Vibrio cholerae, Aliivibrio fischeri, and Pseudomonas aeruginosa but has no effect on Bacteroides fragilis and Bacteroides thetaiotaomicron, microorganisms that are important members of the human intestinal microflora.IMPORTANCE As multidrug antibiotic resistance in pathogenic bacteria continues to rise, there is a critical need for novel antimicrobial agents. An essential requirement for a useful antibiotic is that it selectively targets bacteria without significant effects on the eukaryotic hosts. Korormicin is an excellent candidate in this respect because it targets a unique respiratory enzyme found only in prokaryotes, the Na+-pumping NADH:quinone oxidoreductase (Na+-NQR). Korormicin is synthesized by some species of the marine bacterium Pseudoalteromonas and is a potent and specific inhibitor of Na+-NQR, an enzyme that is essential for the survival and proliferation of many Gram-negative human pathogens, including Vibrio cholerae and Pseudomonas aeruginosa, among others. Here, we identified how korormicin selectively kills these bacteria. The binding of korormicin to Na+-NQR promotes the formation of reactive oxygen species generated by the reaction of the FAD and the 2Fe-2S center cofactors with O2.


Asunto(s)
Antibacterianos/farmacología , Antibiosis , Pseudoalteromonas/metabolismo , Especies Reactivas de Oxígeno/agonistas , Aliivibrio fischeri/efectos de los fármacos , Aliivibrio fischeri/enzimología , Aliivibrio fischeri/crecimiento & desarrollo , Aliivibrio fischeri/patogenicidad , Antibacterianos/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteroides fragilis/efectos de los fármacos , Bacteroides fragilis/enzimología , Bacteroides fragilis/crecimiento & desarrollo , Bacteroides thetaiotaomicron/efectos de los fármacos , Bacteroides thetaiotaomicron/enzimología , Bacteroides thetaiotaomicron/crecimiento & desarrollo , Ácidos Grasos Insaturados/biosíntesis , Ácidos Grasos Insaturados/farmacología , Flavina-Adenina Dinucleótido/metabolismo , Expresión Génica , Lactonas/farmacología , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Operón , Oxidación-Reducción , Estructura Secundaria de Proteína , Pseudoalteromonas/genética , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/patogenicidad , Quinona Reductasas/antagonistas & inhibidores , Quinona Reductasas/genética , Quinona Reductasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Vibrio cholerae/efectos de los fármacos , Vibrio cholerae/enzimología , Vibrio cholerae/crecimiento & desarrollo , Vibrio cholerae/patogenicidad
14.
Biochemistry ; 58(8): 1141-1154, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30657320

RESUMEN

Voltage-dependent anion channel 1 (VDAC1) situated in the outer mitochondrial membrane regulates the transfer of various metabolites and is a key player in mitochondria-mediated apoptosis. Although many small chemicals that modulate the functions of VDAC1 have been reported to date, most, if not all, of them cannot be regarded as specific reagents due to their interactions with other transporters or enzymes. By screening our chemical libraries using isolated Saccharomyces cerevisiae mitochondria, we found pentenediol (PTD)-type compounds (e.g., PTD-023) as new specific inhibitors of VDAC1. PTD-023 inhibited overall ADP-uptake/ATP-release reactions in isolated mitochondria at a single digit µM level. To identify the binding position of PTDs in VDAC1 by visualizing PTD-bound peptides, we conducted ligand-directed tosyl (LDT) chemistry using the synthetic LDT reagent t-PTD-023 derived from the parent PTD-023 in combination with mutagenesis experiments. t-PTD-023 made a covalent bond predominantly and subsidiarily with nucleophilic Cys210 and Cys130, respectively, indicating that PTDs bind to the region interactive with both residues. Site-directed mutations of hydrogen bond-acceptable Asp139 and Glu152 to Ala, which were selected as potential interactive partners of the critical pentenediol moiety based on the presumed binding model of PTDs in VDAC1, resulted in a decrease in susceptibility against PTD-023. This result strongly suggests that PTDs bind to VDAC1 through a specific hydrogen bond with the two residues. The present study is the first to demonstrate the binding position of specific inhibitors of VDAC1 at the amino acid level.


Asunto(s)
Alquenos/química , Mitocondrias/metabolismo , Quinonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Proteoma/análisis , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo
15.
Biochemistry ; 57(6): 1031-1044, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29313673

RESUMEN

Through the extensive screening of our chemical library, we found epoxycyclohexenedione (ECHD)-type compounds (AMM-59 and -120) as unique inhibitors of the bovine heart mitochondrial ADP/ATP carrier (AAC). This study investigated the mechanism of inhibition of AAC by ECHDs using submitochondrial particles (SMPs). Proteomic analyses of ECHD-bound AAC as well as biochemical characterization using different SH reagents showed that ECHDs inhibit the function of AAC by covalently binding primarily to Cys57 and secondarily to Cys160. Interestingly, AAC remarkably aggregated in SMPs upon being incubated with high concentrations of ECHDs for a long period of time. This aggregation was observed under both oxidative and reductive conditions of the sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of SMP proteins, indicating that aggregation is not caused by intermolecular S-S linkages. ECHDs are the first chemicals, to the best of our knowledge, to induce prominent structural alteration in AAC without forming intermolecular S-S linkages. When all solvent-accessible cysteines (Cys57, Cys160, and Cys257) were previously modified by N-ethylmaleimide, the aggregation of AAC was completely suppressed. In contrast, when Cys57 or Cys160 is selectively modified by a SH reagent, the covalent binding of ECHDs to a residual free residue of the two cysteines is sufficient to induce aggregation. The aggregation-inducing ability of another ECHD analogue (AMM-124), which has an alkyl chain that is shorter than those of AMM-59 and -120, was significantly less efficient than that of the two compounds. On the basis of these results, the mechanism underlying the aggregation of AAC induced by ECHDs is discussed.


Asunto(s)
Ciclohexanonas/química , Ciclohexanonas/farmacología , Compuestos Epoxi/química , Compuestos Epoxi/farmacología , Translocasas Mitocondriales de ADP y ATP/antagonistas & inhibidores , Adenosina Difosfato/metabolismo , Animales , Bovinos , Translocasas Mitocondriales de ADP y ATP/metabolismo , Modelos Moleculares , Agregado de Proteínas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
16.
J Biol Chem ; 292(19): 7727-7742, 2017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28298441

RESUMEN

The Na+-pumping NADH-quinone oxidoreductase (Na+-NQR) is the first enzyme of the respiratory chain and the main ion transporter in many marine and pathogenic bacteria, including Vibrio cholerae The V. cholerae Na+-NQR has been extensively studied, but its binding sites for ubiquinone and inhibitors remain controversial. Here, using a photoreactive ubiquinone PUQ-3 as well as two aurachin-type inhibitors [125I]PAD-1 and [125I]PAD-2 and photoaffinity labeling experiments on the isolated enzyme, we demonstrate that the ubiquinone ring binds to the NqrA subunit in the regions Leu-32-Met-39 and Phe-131-Lys-138, encompassing the rear wall of a predicted ubiquinone-binding cavity. The quinolone ring and alkyl side chain of aurachin bound to the NqrB subunit in the regions Arg-43-Lys-54 and Trp-23-Gly-89, respectively. These results indicate that the binding sites for ubiquinone and aurachin-type inhibitors are in close proximity but do not overlap one another. Unexpectedly, although the inhibitory effects of PAD-1 and PAD-2 were almost completely abolished by certain mutations in NqrB (i.e. G140A and E144C), the binding reactivities of [125I]PAD-1 and [125I]PAD-2 to the mutated enzymes were unchanged compared with those of the wild-type enzyme. We also found that photoaffinity labeling by [125I]PAD-1 and [125I]PAD-2, rather than being competitively suppressed in the presence of other inhibitors, is enhanced under some experimental conditions. To explain these apparently paradoxical results, we propose models for the catalytic reaction of Na+-NQR and its interactions with inhibitors on the basis of the biochemical and biophysical results reported here and in previous work.


Asunto(s)
Proteínas Bacterianas/química , Complejo I de Transporte de Electrón/química , Quinona Reductasas/química , Ubiquinona/química , Vibrio cholerae/enzimología , Sitios de Unión , Catálisis , Simulación por Computador , Cristalografía por Rayos X , Transporte de Electrón , Inhibidores Enzimáticos/química , Ácidos Grasos Insaturados/química , Lactonas/química , Espectrometría de Masas , Estructura Molecular , Mutación , Etiquetas de Fotoafinidad , Unión Proteica , Pseudoalteromonas/química , Quinolonas/química , Sodio/química
17.
Biochemistry ; 56(4): 570-581, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28051849

RESUMEN

The role of the voltage-dependent anion channel (VDAC) as a metabolic gate of the mitochondrial outer membrane has been firmly established; however, its involvement in the regulation of mitochondrial permeability transition (PT) remains extremely controversial. Although some low-molecular-weight chemicals have been proposed to modulate the regulatory role of VDAC in the induction of PT, direct binding between these chemicals and VDAC has not yet been demonstrated. In the present study, we investigated whether the ubiquinone molecule directly binds to VDAC in Saccharomyces cerevisiae mitochondria through a photoaffinity labeling technique using two photoreactive ubiquinones (PUQ-1 and PUQ-2). The results of the labeling experiments demonstrated that PUQ-1 and PUQ-2 specifically bind to VDAC1 and that the labeled position is located in the C-terminal region Phe221-Lys234, connecting the 15th and 16th ß-strand sheets. Mutations introduced in this region (R224A, Y225A, D228A, and Y225A/D228A) hardly affected the binding affinity of PUQ-1. PUQ-1 and PUQ-2 both significantly suppressed the Ca2+-induced mitochondrial PT (monitored by mitochondrial swelling) at the one digit µM level. Thus, the results of the present study provided, for the first time to our knowledge, direct evidence indicating that the ubiquinone molecule specifically binds to VDAC1 through its quinone-head ring.


Asunto(s)
Mitocondrias/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efectos de los fármacos , Ubiquinona/farmacología , Canal Aniónico 1 Dependiente del Voltaje/química , Calcio/metabolismo , Expresión Génica , Transporte Iónico/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Dilatación Mitocondrial/efectos de los fármacos , Modelos Moleculares , Mutación , Fosforilación Oxidativa/efectos de los fármacos , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Coloración y Etiquetado/métodos , Ubiquinona/análogos & derivados , Ubiquinona/síntesis química , Canal Aniónico 1 Dependiente del Voltaje/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
18.
Biochemistry ; 56(32): 4279-4287, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28707880

RESUMEN

We previously showed that a bulky ring-strained cycloalkyne possessing a rhodamine fluorophore directly reacts (via strain-promoted click chemistry) with the azido group incorporated (via ligand-directed tosyl chemistry) into Asp160 in the 49 kDa subunit of complex I in bovine heart submitochondrial particles [Masuya, T., et al. (2014) Biochemistry 53, 7816-7823]. This two-step conjugation may be a promising technique for specific chemical modifications of the quinone-access channel in complex I by various molecular probes, which would lead to new methodologies for studying the enzyme. However, because the reactivities of ring-strained cycloalkynes are generally high, they also react with other nucleophilic amino acids in mitochondrial proteins, resulting in significant undesired side reactions. To minimize side reactions and achieve precise pinpoint chemical modification of 49 kDa Asp160, we investigated an optimal pair of chemical tags for the two-step conjugation reaction. We found that instead of strain-promoted click chemistry, Diels-Alder cycloaddition of a pair of cyclopropene incorporated into 49 kDa Asp160 (via ligand-directed tosyl chemistry) and externally added tetrazine is more efficient for the pinpoint modification. An excess of quinone-site inhibitors did not interfere with Diels-Alder cycloaddition between the cyclopropene and tetrazine. These results along with the previous findings (cited above) strongly suggest that in contrast to the predicted quinone-access channel modeled by X-ray crystallographic and single-particle cryo-electron microscopic studies, the channel is open or undergoes large structural rearrangements to allow bulky ligands into the proximity of 49 kDa Asp160.


Asunto(s)
Complejo I de Transporte de Electrón/química , Mitocondrias Cardíacas/enzimología , Modelos Moleculares , Sondas Moleculares/química , Animales , Bovinos , Química Clic/métodos , Ciclopropanos/química
19.
Biochim Biophys Acta ; 1857(7): 884-91, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26625959

RESUMEN

There are a variety of chemicals which regulate the functions of bacterial and mitochondrial complex I. Some of them, such as rotenone and piericidin A, have been indispensable molecular tools in mechanistic studies on complex I. A large amount of experimental data characterizing the actions of complex I inhibitors has been accumulated so far. Recent X-ray crystallographic structural models of entire complex I may be helpful to carefully interpret this data. We herein focused on recent hot topics on complex I inhibitors and the subjects closely connected to these inhibitors, which may provide useful information not only on the structural and functional aspects of complex I, but also on drug design targeting this enzyme. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.


Asunto(s)
Diseño de Fármacos , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo I de Transporte de Electrón/ultraestructura , Inhibidores Enzimáticos/química , Modelos Químicos , Modelos Moleculares , Sitios de Unión , Activación Enzimática/efectos de los fármacos , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
20.
Biochemistry ; 55(3): 470-81, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26701224

RESUMEN

We previously succeeded in site-specific chemical modifications of the inner part of the quinone binding pocket of bovine mitochondrial complex I through ligand-directed tosylate (LDT) chemistry using specific inhibitors as high-affinity ligands for the enzyme [Masuya, T., et al. (2014) Biochemistry 53, 2304-2317, 7816-7823]. To investigate whether a short-chain ubiquinone, in place of these specific inhibitors, serves as a ligand for LDT chemistry, we herein synthesized a LDT reagent QT possessing ubiquinone scaffold and performed LDT chemistry with bovine heart submitochondrial particles (SMP). Detailed proteomic analyses revealed that QT properly guides the tosylate group into the quinone binding pocket and transfers a terminal alkyne to nucleophilic amino acids His150 and Asp160 in the 49 kDa subunit. This result clearly indicates that QT occupies the inner part of the quinone binding pocket. Nevertheless, we noted that QT is a unique electron acceptor from complex I distinct from typical short-chain ubiquinones such as ubiquinone-1 (Q1) for several reasons; for example, QT reduction in NADH-QT oxidoreduction was almost completely insensitive to quinone-site inhibitors (such as bullatacin and piericidin A), and this reaction did not produce a membrane potential. On the basis of detailed comparisons of the electron transfer features between QT and typical short-chain quinones, we conclude that QT may accept electrons from an N2 cluster at a position different from that of typical short-chain quinones because of its unique side-chain structure; accordingly, QT reduction is unable to induce putative structural changes inside the quinone binding pocket, which are critical for driving proton translocation. Thus, QT is the first ubiquinone analogue, to the best of our knowledge, the catalytic reduction of which is decoupled from proton translocation through the membrane domain. Implications for mechanistic studies on QT are also discussed.


Asunto(s)
Bencenosulfonatos/química , Complejo I de Transporte de Electrón/química , Ubiquinona/análogos & derivados , Alquinos/química , Alquinos/metabolismo , Animales , Bencenosulfonatos/síntesis química , Bencenosulfonatos/farmacología , Sitios de Unión , Biocatálisis , Bovinos , Transporte de Electrón , Complejo I de Transporte de Electrón/metabolismo , Potenciales de la Membrana , Mitocondrias Cardíacas/química , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/fisiología , Membranas Mitocondriales/fisiología , Oxidación-Reducción , Protones , Superóxidos/metabolismo , Ubiquinona/síntesis química , Ubiquinona/química , Ubiquinona/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA