Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Exp Bot ; 75(16): 5076-5090, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38761108

RESUMEN

Self-sustaining vegetation in metal-contaminated areas is essential for rebuilding ecological resilience and community stability in degraded lands. Metal-tolerant plants originating from contaminated post-mining areas may hold the key to successful plant establishment and growth. Yet, little is known about the impact of metal toxicity on reproductive strategies, metal accumulation, and allocation patterns at the seed stage. Our research focused on the metal tolerant Atriplex lentiformis. Specifically, we examined the effects of toxic metal(loid) concentration in soils on variability in its reproductive strategies, including germination patterns, elemental uptake, and allocation within the seeds. We employed advanced imaging techniques like synchrotron X-ray fluorescence microscopy (2D scans and 3D tomograms) combined with inductively coupled plasma mass spectrometry to reveal significant differences in metal(loid) concentration and distribution within the seed structures of A. lentiformis from contrasting habitats. Exclusive Zn hotspots of high concentrations were found in the seeds of the metallicolous accession, primarily in the sensitive tissues of shoot apical meristems and root zones of the seed embryos. Our findings offer novel insights into phenotypic variability and metal tolerance and accumulation in plants from extreme environments. This knowledge can be applied to enhance plant survival and performance in land restoration efforts.


Asunto(s)
Atriplex , Ecosistema , Semillas , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/fisiología , Atriplex/fisiología , Atriplex/efectos de los fármacos , Adaptación Fisiológica , Contaminantes del Suelo/toxicidad , Germinación/efectos de los fármacos , Metales/toxicidad , Metales/metabolismo , Metales Pesados/toxicidad , Metales Pesados/metabolismo
2.
Geoderma ; 4302023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37600960

RESUMEN

Invasive plants can modify the diversity and taxonomical structure of soil microbiomes. However, it is difficult to generalize the underlying factors as their influence often seems to depend on the complex plant-soil-microbial interactions. In this paper, we investigated how Quercus rubra impacts on the soil microbiome across two soil horizons in relation to native woodland. Five paired adjacent invaded vs native vegetation plots in a managed forest in southern Poland were investigated. Soil microbial communities were assessed along with soil enzyme activities and soil physicochemical parameters, separately for both organic and mineral horizons, as well as forest stand characteristics to explore plant-soil-microbe interactions. Although Q. rubra did not significantly affect pH, organic C, total N, available nutrients nor enzymatic activity, differences in soil abiotic properties (except C to N ratio) were primarily driven by soil depth for both vegetation types. Further, we found significant differences in soil microbiome under invasion in relation to native vegetation. Microbial richness and diversity were lower in both horizons of Q. rubra vs control plots. Moreover, Q. rubra increased relative abundance of unique amplicon sequence variants in both horizons and thereby significantly changed the structure of the core soil microbial communities, in comparison to the control plots. In addition, predicted microbial functional groups indicated a predominant soil depth effect in both vegetation plots with higher abundance of aerobic chemoheterotrophic bacteria and endophytic fungi in the organic horizon and greater abundance of methanotrophic and methylotrophic bacteria, and ectomycorrhizal fungi in the mineral horizon. Overall, our results indicate strong associations between Q. rubra invasion and changes in soil microbiome and associated functions, a finding that needs to be further investigated to predict modifications in ecosystem functioning caused by this invasive species.

3.
Plant Soil ; 472(1-2): 175-192, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36389645

RESUMEN

Purpose: Plant reproduction in metalliferous habitats is challenged by elevated concentrations of metal trace elements in soil. As part of their survival strategy, metal-tolerant plants have adjusted reproductive traits, including seed morphology, dormancy, and germination rate. These traits are particularly relevant, yet poorly understood, in metal hyperaccumulators that are promising candidates for phytoremediation. Methods: We assessed seed shape characteristics, dormancy, and germination rate in the hyperaccumulating model species Arabidopsis halleri. Seed morphological parameters were evaluated using seeds collected from two metalliferous and two non-metalliferous sites (~ 1000 seeds per location). We also addressed the potential influence of seed surface-associated microbes and endophytic fungi on germination success. Results: Seeds from non-metallicolous populations were on average 18% bigger than those from metal-contaminated post-mining sites, which contrasts the general expectation about reproductive parts in metallicolous plants. Irrespective of their origin, surface-sterilized seeds had up to ~ 20% higher germination rates and germinated earlier than non-sterilized seeds, hinting at a negative effect of seed-associated microbial communities. Surface sterilization also facilitated the emergence of an endophytic fungus (Aspergillus niger) that is a known seed-borne pathogen. Interestingly, A. niger actually promoted germination in surface-sterilized seeds from some locations. Conclusion: Despite species-wide metal tolerance in A. halleri, metalliferous conditions seem to differently affect reproductive traits compared to non-metalliferous environments (e.g., smaller seeds). Yet, higher germination rates in these populations hint at the potential of A. halleri to successfully colonize post-mining habitats. This process is modulated by site-specific interactions with seed microbiota.

4.
Chemosphere ; 285: 131437, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34265706

RESUMEN

The hyperaccumulation trait allows some plant species to allocate remarkable amounts of trace metal elements (TME) to their foliage without suffering from toxicity. Utilizing hyperaccumulating plants to remediate TME contaminated sites could provide a sustainable alternative to industrial approaches. A major hurdle that currently hampers this approach is the complexity of the plant-soil relationship. To better anticipate the outcome of future phytoremediation efforts, we evaluated the potential for soil metal-bioavailability to predict TME accumulation in two non-metallicolous and two metallicolous populations of the Zn/Cd hyperaccumulator Arabidopsis halleri. We also examined the relationship between a population's habitat and its phytoextraction efficiency. Total Zn and Cd concentrations were quantified in soil and plant material, and bioavailable fractions in soil were quantified via Diffusive Gradients in Thin-films (DGT). We found that shoot TME accumulation varied independent from both total and bioavailable soil TME concentrations in metallicolous individuals. In fact, hyperaccumulation patterns appear more plant- and less soil-driven: one non-metallicolous population proved to be as efficient in accumulating Zn on non-polluted soil as the metallicolous populations in their highly contaminated environment. Our findings demonstrate that in-situ information on plant phytoextraction efficiency is indispensable to optimize site-specific phytoremediation measures. If successful, hyperaccumulating plant biomass may provide valuable source material for application in the emerging field of green chemistry.


Asunto(s)
Arabidopsis , Contaminantes del Suelo , Biodegradación Ambiental , Cadmio , Humanos , Suelo , Contaminantes del Suelo/análisis , Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA