Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 41(3): e109728, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34935163

RESUMEN

Human respiratory syncytial virus (RSV) causes severe respiratory illness in children and the elderly. Here, using cryogenic electron microscopy and tomography combined with computational image analysis and three-dimensional reconstruction, we show that there is extensive helical ordering of the envelope-associated proteins and glycoproteins of RSV filamentous virions. We calculated a 16 Å resolution sub-tomogram average of the matrix protein (M) layer that forms an endoskeleton below the viral envelope. These data define a helical lattice of M-dimers, showing how M is oriented relative to the viral envelope. Glycoproteins that stud the viral envelope were also found to be helically ordered, a property that was coordinated by the M-layer. Furthermore, envelope glycoproteins clustered in pairs, a feature that may have implications for the conformation of fusion (F) glycoprotein epitopes that are the principal target for vaccine and monoclonal antibody development. We also report the presence, in authentic virus infections, of N-RNA rings packaged within RSV virions. These data provide molecular insight into the organisation of the virion and the mechanism of its assembly.


Asunto(s)
Virus Sincitial Respiratorio Humano/ultraestructura , Envoltura Viral/ultraestructura , Proteínas de la Matriz Viral/química , Células A549 , Animales , Chlorocebus aethiops , Glicoproteínas/química , Humanos , Conformación Proteica en Hélice alfa , Virus Sincitial Respiratorio Humano/química , Células Vero , Envoltura Viral/química
2.
J Gen Virol ; 105(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38861287

RESUMEN

Increased human-to-human transmission of monkeypox virus (MPXV) is cause for concern, and antibodies directed against vaccinia virus (VACV) are known to confer cross-protection against Mpox. We used 430 serum samples derived from the Scottish patient population to investigate antibody-mediated cross-neutralization against MPXV. By combining electrochemiluminescence immunoassays with live-virus neutralization assays, we show that people born when smallpox vaccination was routinely offered in the United Kingdom have increased levels of antibodies that cross-neutralize MPXV. Our results suggest that age is a risk factor of Mpox infection, and people born after 1971 are at higher risk of infection upon exposure.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Monkeypox virus , Mpox , Vacuna contra Viruela , Humanos , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacuna contra Viruela/inmunología , Vacuna contra Viruela/administración & dosificación , Adulto , Persona de Mediana Edad , Monkeypox virus/inmunología , Adulto Joven , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Mpox/inmunología , Mpox/prevención & control , Femenino , Adolescente , Anciano , Masculino , Protección Cruzada/inmunología , Escocia , Factores de Edad , Pruebas de Neutralización , Niño , Vacunación , Viruela/prevención & control , Viruela/inmunología , Preescolar , Reacciones Cruzadas , Anciano de 80 o más Años
3.
Bioinformatics ; 39(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36722204

RESUMEN

MOTIVATION: The assembly of contiguous sequence from metagenomic samples presents a particular challenge, due to the presence of multiple species, often closely related, at varying levels of abundance. Capturing diversity within species, for example, viral haplotypes, or bacterial strain-level diversity, is even more challenging. RESULTS: We present MetaCortex, a metagenome assembler that captures intra-species diversity by searching for signatures of local variation along assembled sequences in the underlying assembly graph and outputting these sequences in sequence graph format. We show that MetaCortex produces accurate assemblies with higher genome coverage and contiguity than other popular metagenomic assemblers on mock viral communities with high levels of strain-level diversity and on simulated communities containing simulated strains. AVAILABILITY AND IMPLEMENTATION: Source code is freely available to download from https://github.com/SR-Martin/metacortex, is implemented in C and supported on MacOS and Linux. The version used for the results presented in this article is available at doi.org/10.5281/zenodo.7273627. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Metagenoma , Metagenómica , Haplotipos , Programas Informáticos
4.
PLoS Biol ; 19(12): e3001065, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34932557

RESUMEN

The pandemic spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of Coronavirus Disease 2019 (COVID-19), represents an ongoing international health crisis. A key symptom of SARS-CoV-2 infection is the onset of fever, with a hyperthermic temperature range of 38 to 41°C. Fever is an evolutionarily conserved host response to microbial infection that can influence the outcome of viral pathogenicity and regulation of host innate and adaptive immune responses. However, it remains to be determined what effect elevated temperature has on SARS-CoV-2 replication. Utilizing a three-dimensional (3D) air-liquid interface (ALI) model that closely mimics the natural tissue physiology of SARS-CoV-2 infection in the respiratory airway, we identify tissue temperature to play an important role in the regulation of SARS-CoV-2 infection. Respiratory tissue incubated at 40°C remained permissive to SARS-CoV-2 entry but refractory to viral transcription, leading to significantly reduced levels of viral RNA replication and apical shedding of infectious virus. We identify tissue temperature to play an important role in the differential regulation of epithelial host responses to SARS-CoV-2 infection that impact upon multiple pathways, including intracellular immune regulation, without disruption to general transcription or epithelium integrity. We present the first evidence that febrile temperatures associated with COVID-19 inhibit SARS-CoV-2 replication in respiratory epithelia. Our data identify an important role for tissue temperature in the epithelial restriction of SARS-CoV-2 independently of canonical interferon (IFN)-mediated antiviral immune defenses.


Asunto(s)
Células Epiteliales/inmunología , Calor , Inmunidad Innata/inmunología , Interferones/inmunología , Mucosa Respiratoria/inmunología , SARS-CoV-2/inmunología , Replicación Viral/inmunología , Adolescente , Animales , COVID-19/genética , COVID-19/inmunología , COVID-19/virología , Chlorocebus aethiops , Células Epiteliales/metabolismo , Células Epiteliales/virología , Femenino , Perfilación de la Expresión Génica/métodos , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata/genética , Interferones/genética , Interferones/metabolismo , Masculino , Persona de Mediana Edad , Modelos Biológicos , RNA-Seq/métodos , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/virología , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Técnicas de Cultivo de Tejidos , Células Vero , Replicación Viral/genética , Replicación Viral/fisiología
5.
J Infect Dis ; 227(12): 1396-1406, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36550077

RESUMEN

BACKGROUND: Multiple viruses cocirculate and contribute to the burden of respiratory disease. Virus-virus interactions can decrease susceptibility to infection and this interference can have an epidemiological impact. As humans are normally exposed to a community of cocirculating respiratory viruses, experimental coinfection studies are necessary to understand the disease mechanisms of multipathogen systems. We aimed to characterize interactions within the respiratory tract between severe acute respiratory syndrome virus 2 (SARS-CoV-2) and 2 major respiratory viruses: influenza A virus (IAV), and respiratory syncytial virus (RSV). METHODS: We performed single infections and coinfections with SARS-CoV-2 combined with IAV or RSV in cultures of human bronchial epithelial cells. We combined microscopy with quantification of viral replication in the presence or absence of an innate immune inhibitor to determine changes in virus-induced pathology, virus spread, and virus replication. RESULTS: SARS-CoV-2 replication is inhibited by both IAV and RSV. This inhibition is dependent on a functional antiviral response and the level of inhibition is proportional to the timing of secondary viral infection. CONCLUSIONS: Infections with other respiratory viruses might provide transient resistance to SARS-CoV-2. It would therefore be expected that the incidence of coronavirus disease 2019 (COVID-19) may decrease during periods of high circulation of IAV and RSV.


Asunto(s)
COVID-19 , Coinfección , Virus de la Influenza A , Gripe Humana , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Gripe Humana/epidemiología , SARS-CoV-2 , Mucosa Respiratoria , Coinfección/epidemiología
6.
Emerg Infect Dis ; 29(6): 1223-1227, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37141617

RESUMEN

Anthropogenic transmission of SARS-CoV-2 to pet cats highlights the importance of monitoring felids for exposure to circulating variants. We tested cats in the United Kingdom for SARS-CoV-2 antibodies; seroprevalence peaked during September 2021-February 2022. The variant-specific response in cats trailed circulating variants in humans, indicating multiple human-to-cat transmissions over a prolonged period.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Gatos , Animales , Estudios Seroepidemiológicos , COVID-19/epidemiología , COVID-19/veterinaria , Anticuerpos Antivirales , Reino Unido/epidemiología
7.
PLoS Pathog ; 17(12): e1010174, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34919598

RESUMEN

The mechanisms and consequences of genome evolution on viral fitness following host shifts are poorly understood. In addition, viral fitness -the ability of an organism to reproduce and survive- is multifactorial and thus difficult to quantify. Influenza A viruses (IAVs) circulate broadly among wild birds and have jumped into and become endemic in multiple mammalian hosts, including humans, pigs, dogs, seals, and horses. H3N8 equine influenza virus (EIV) is an endemic virus of horses that originated in birds and has been circulating uninterruptedly in equine populations since the early 1960s. Here, we used EIV to quantify changes in infection phenotype associated to viral fitness due to genome-wide changes acquired during long-term adaptation. We performed experimental infections of two mammalian cell lines and equine tracheal explants using the earliest H3N8 EIV isolated (A/equine/Uruguay/63 [EIV/63]), and A/equine/Ohio/2003 (EIV/2003), a monophyletic descendant of EIV/63 isolated 40 years after the emergence of H3N8 EIV. We show that EIV/2003 exhibits increased resistance to interferon, enhanced viral replication, and a more efficient cell-to-cell spread in cells and tissues. Transcriptomics analyses revealed virus-specific responses to each virus, mainly affecting host immunity and inflammation. Image analyses of infected equine respiratory explants showed that despite replicating at higher levels and spreading over larger areas of the respiratory epithelium, EIV/2003 induced milder lesions compared to EIV/63, suggesting that adaptation led to reduced tissue pathogenicity. Our results reveal previously unknown links between virus genotype and the host response to infection, providing new insights on the relationship between virus evolution and fitness.


Asunto(s)
Adaptación Fisiológica/fisiología , Interacciones Huésped-Patógeno/fisiología , Subtipo H3N8 del Virus de la Influenza A/fisiología , Subtipo H3N8 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/virología , Animales , Aptitud Genética/fisiología , Caballos
8.
PLoS Pathog ; 17(12): e1010022, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34855916

RESUMEN

Vaccines are proving to be highly effective in controlling hospitalisation and deaths associated with SARS-CoV-2 infection but the emergence of viral variants with novel antigenic profiles threatens to diminish their efficacy. Assessment of the ability of sera from vaccine recipients to neutralise SARS-CoV-2 variants will inform the success of strategies for minimising COVID19 cases and the design of effective antigenic formulations. Here, we examine the sensitivity of variants of concern (VOCs) representative of the B.1.617.1 and B.1.617.2 (first associated with infections in India) and B.1.351 (first associated with infection in South Africa) lineages of SARS-CoV-2 to neutralisation by sera from individuals vaccinated with the BNT162b2 (Pfizer/BioNTech) and ChAdOx1 (Oxford/AstraZeneca) vaccines. Across all vaccinated individuals, the spike glycoproteins from B.1.617.1 and B.1.617.2 conferred reductions in neutralisation of 4.31 and 5.11-fold respectively. The reduction seen with the B.1.617.2 lineage approached that conferred by the glycoprotein from B.1.351 (South African) variant (6.29-fold reduction) that is known to be associated with reduced vaccine efficacy. Neutralising antibody titres elicited by vaccination with two doses of BNT162b2 were significantly higher than those elicited by vaccination with two doses of ChAdOx1. Fold decreases in the magnitude of neutralisation titre following two doses of BNT162b2, conferred reductions in titre of 7.77, 11.30 and 9.56-fold respectively to B.1.617.1, B.1.617.2 and B.1.351 pseudoviruses, the reduction in neutralisation of the delta variant B.1.617.2 surpassing that of B.1.351. Fold changes in those vaccinated with two doses of ChAdOx1 were 0.69, 4.01 and 1.48 respectively. The accumulation of mutations in these VOCs, and others, demonstrate the quantifiable risk of antigenic drift and subsequent reduction in vaccine efficacy. Accordingly, booster vaccines based on updated variants are likely to be required over time to prevent productive infection. This study also suggests that two dose regimes of vaccine are required for maximal BNT162b2 and ChAdOx1-induced immunity.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacuna BNT162 , COVID-19 , Inmunización Secundaria , SARS-CoV-2/inmunología , Eficacia de las Vacunas , Deriva y Cambio Antigénico/inmunología , Vacuna BNT162/administración & dosificación , Vacuna BNT162/inmunología , COVID-19/inmunología , COVID-19/mortalidad , COVID-19/prevención & control , Células HEK293 , Humanos
9.
Proc Natl Acad Sci U S A ; 117(46): 28859-28866, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33122433

RESUMEN

Whether a pathogen entering a new host species results in a single infection or in onward transmission, and potentially an outbreak, depends upon the progression of infection in the index case. Although index infections are rarely observable in nature, experimental inoculations of pathogens into novel host species provide a rich and largely unexploited data source for meta-analyses to identify the host and pathogen determinants of variability in infection outcomes. We analyzed the progressions of 514 experimental cross-species inoculations of rabies virus, a widespread zoonosis which in nature exhibits both dead-end infections and varying levels of sustained transmission in novel hosts. Inoculations originating from bats rather than carnivores, and from warmer- to cooler-bodied species caused infections with shorter incubation periods that were associated with diminished virus excretion. Inoculations between distantly related hosts tended to result in shorter clinical disease periods, which are also expected to impede onward transmission. All effects were modulated by infection dose. Taken together, these results suggest that as host species become more dissimilar, increased virulence might act as a limiting factor preventing onward transmission. These results can explain observed constraints on rabies virus host shifts, describe a previously unrecognized role of host body temperature, and provide a potential explanation for host shifts being less likely between genetically distant species. More generally, our study highlights meta-analyses of experimental infections as a tractable approach to quantify the complex interactions between virus, reservoir, and novel host that shape the outcome of cross-species transmission.


Asunto(s)
Interacciones Microbiota-Huesped/genética , Especificidad del Huésped/fisiología , Rabia/transmisión , Animales , Carnívoros , Quirópteros , Reservorios de Enfermedades/microbiología , Interacciones Microbiota-Huesped/fisiología , Humanos , Filogenia , Rabia/epidemiología , Virus de la Rabia/patogenicidad , Virulencia
10.
J Infect Dis ; 227(1): 40-49, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-35920058

RESUMEN

Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), humans have been exposed to distinct SARS-CoV-2 antigens, either by infection with different variants, and/or vaccination. Population immunity is thus highly heterogeneous, but the impact of such heterogeneity on the effectiveness and breadth of the antibody-mediated response is unclear. We measured antibody-mediated neutralization responses against SARS-CoV-2Wuhan, SARS-CoV-2α, SARS-CoV-2δ, and SARS-CoV-2ο pseudoviruses using sera from patients with distinct immunological histories, including naive, vaccinated, infected with SARS-CoV-2Wuhan, SARS-CoV-2α, or SARS-CoV-2δ, and vaccinated/infected individuals. We show that the breadth and potency of the antibody-mediated response is influenced by the number, the variant, and the nature (infection or vaccination) of exposures, and that individuals with mixed immunity acquired by vaccination and natural exposure exhibit the broadest and most potent responses. Our results suggest that the interplay between host immunity and SARS-CoV-2 evolution will shape the antigenicity and subsequent transmission dynamics of SARS-CoV-2, with important implications for future vaccine design.


Neutralizing antibodies provide protection against viruses and are generated because of vaccination or prior infections. The main target of anti-SARS-CoV-2 neutralizing antibodies is a protein called spike, which decorates the viral particle and mediates viral entry into cells. As SARS-CoV-2 evolves, mutations accumulate in the spike protein, allowing the virus to escape antibody-mediated immunity and decreasing vaccine effectiveness. Multiple SARS-CoV-2 variants have appeared since the start of the COVID-19 pandemic, causing various waves of infection through the population and infecting­in some cases­people that had been previously infected or vaccinated. Because the antibody response is highly specific, individuals infected with different variants are likely to have different repertoires of neutralizing antibodies. We studied the breadth and potency of the antibody-mediated response against different SARS-CoV-2 variants using sera from vaccinated people as well as from people infected with different variants. We show that potency of the antibody response against different SARS-CoV-2 variants depends on the particular variant that infected each person, the exposure type (infection or vaccination) and the number and order of exposures. Our study provides insight into the interplay between virus evolution and immunity, as well as important information for the development of better vaccination strategies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Anticuerpos , Vacunación , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Glicoproteína de la Espiga del Coronavirus
11.
Proc Natl Acad Sci U S A ; 116(52): 27142-27150, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31843887

RESUMEN

The human respiratory tract hosts a diverse community of cocirculating viruses that are responsible for acute respiratory infections. This shared niche provides the opportunity for virus-virus interactions which have the potential to affect individual infection risks and in turn influence dynamics of infection at population scales. However, quantitative evidence for interactions has lacked suitable data and appropriate analytical tools. Here, we expose and quantify interactions among respiratory viruses using bespoke analyses of infection time series at the population scale and coinfections at the individual host scale. We analyzed diagnostic data from 44,230 cases of respiratory illness that were tested for 11 taxonomically broad groups of respiratory viruses over 9 y. Key to our analyses was accounting for alternative drivers of correlated infection frequency, such as age and seasonal dependencies in infection risk, allowing us to obtain strong support for the existence of negative interactions between influenza and noninfluenza viruses and positive interactions among noninfluenza viruses. In mathematical simulations that mimic 2-pathogen dynamics, we show that transient immune-mediated interference can cause a relatively ubiquitous common cold-like virus to diminish during peak activity of a seasonal virus, supporting the potential role of innate immunity in driving the asynchronous circulation of influenza A and rhinovirus. These findings have important implications for understanding the linked epidemiological dynamics of viral respiratory infections, an important step towards improved accuracy of disease forecasting models and evaluation of disease control interventions.

12.
J Infect Dis ; 224(1): 31-38, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-33754149

RESUMEN

Virus-virus interactions influence the epidemiology of respiratory infections. However, the impact of viruses causing upper respiratory infections on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication and transmission is currently unknown. Human rhinoviruses cause the common cold and are the most prevalent respiratory viruses of humans. Interactions between rhinoviruses and cocirculating respiratory viruses have been shown to shape virus epidemiology at the individual host and population level. Here, we examined the replication kinetics of SARS-CoV-2 in the human respiratory epithelium in the presence or absence of rhinovirus. We show that human rhinovirus triggers an interferon response that blocks SARS-CoV-2 replication. Mathematical simulations show that this virus-virus interaction is likely to have a population-wide effect as an increasing prevalence of rhinovirus will reduce the number of new coronavirus disease 2019 cases.


Asunto(s)
Antibiosis , COVID-19/virología , Coinfección , Infecciones por Picornaviridae/virología , Rhinovirus/fisiología , SARS-CoV-2/fisiología , Replicación Viral , COVID-19/epidemiología , Línea Celular , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Humanos , Mucosa Respiratoria/virología
13.
J Infect Dis ; 223(6): 971-980, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33367847

RESUMEN

Identifying drivers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure and quantifying population immunity is crucial to prepare for future epidemics. We performed a serial cross-sectional serosurvey throughout the first pandemic wave among patients from the largest health board in Scotland. Screening of 7480 patient serum samples showed a weekly seroprevalence ranging from 0.10% to 8.23% in primary and 0.21% to 17.44% in secondary care, respectively. Neutralization assays showed that highly neutralizing antibodies developed in about half of individuals who tested positive with enzyme-linked immunosorbent assay, mainly among secondary care patients. We estimated the individual probability of SARS-CoV-2 exposure and quantified associated risk factors. We show that secondary care patients, male patients, and 45-64-year-olds exhibit a higher probability of being seropositive. The identification of risk factors and the differences in virus neutralization activity between patient populations provided insights into the patterns of virus exposure during the first pandemic wave and shed light on what to expect in future waves.


Asunto(s)
COVID-19/inmunología , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/diagnóstico , COVID-19/epidemiología , Línea Celular , Estudios Transversales , Atención a la Salud , Demografía , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunidad , Masculino , Persona de Mediana Edad , Pandemias , Factores de Riesgo , Escocia/epidemiología , Estudios Seroepidemiológicos , Adulto Joven
14.
PLoS Pathog ; 15(2): e1007531, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30731004

RESUMEN

Virus ecology and evolution play a central role in disease emergence. However, their relative roles will vary depending on the viruses and ecosystems involved. We combined field studies, phylogenetics and experimental infections to document with unprecedented detail the stages that precede initial outbreaks during viral emergence in nature. Using serological surveys we showed that in the absence of large-scale outbreaks, horses in Mongolia are routinely exposed to and infected by avian influenza viruses (AIVs) circulating among wild birds. Some of those AIVs are genetically related to an avian-origin virus that caused an epizootic in horses in 1989. Experimental infections showed that most AIVs replicate in the equine respiratory tract without causing lesions, explaining the absence of outbreaks of disease. Our results show that AIVs infect horses but do not spread, or they infect and spread but do not cause disease. Thus, the failure of AIVs to evolve greater transmissibility and to cause disease in horses is in this case the main barrier preventing disease emergence.


Asunto(s)
Caballos/inmunología , Gripe Aviar/genética , Animales , Animales Salvajes , Asia , Evolución Biológica , Aves , Brotes de Enfermedades , Transmisión de Enfermedad Infecciosa/veterinaria , Evolución Molecular , Caballos/genética , Humanos , Gripe Aviar/inmunología , Gripe Humana , Infecciones por Orthomyxoviridae/veterinaria , Filogenia
15.
J Infect Dis ; 222(1): 17-25, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32296837

RESUMEN

Public health preparedness for coronavirus (CoV) disease 2019 (COVID-19) is challenging in the absence of setting-specific epidemiological data. Here we describe the epidemiology of seasonal CoVs (sCoVs) and other cocirculating viruses in the West of Scotland, United Kingdom. We analyzed routine diagnostic data for >70 000 episodes of respiratory illness tested molecularly for multiple respiratory viruses between 2005 and 2017. Statistical associations with patient age and sex differed between CoV-229E, CoV-OC43, and CoV-NL63. Furthermore, the timing and magnitude of sCoV outbreaks did not occur concurrently, and coinfections were not reported. With respect to other cocirculating respiratory viruses, we found evidence of positive, rather than negative, interactions with sCoVs. These findings highlight the importance of considering cocirculating viruses in the differential diagnosis of COVID-19. Further work is needed to establish the occurrence/degree of cross-protective immunity conferred across sCoVs and with COVID-19, as well as the role of viral coinfection in COVID-19 disease severity.


Asunto(s)
Betacoronavirus , Coronavirus Humano 229E/genética , Infecciones por Coronavirus/epidemiología , Coronavirus Humano NL63/genética , Coronavirus Humano OC43/genética , Pandemias , Neumonía Viral/epidemiología , Estaciones del Año , Adolescente , Adulto , Anciano , COVID-19 , Niño , Preescolar , Coinfección , Infecciones por Coronavirus/virología , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Neumonía Viral/virología , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2 , Escocia/epidemiología , Adulto Joven
16.
PLoS Comput Biol ; 15(12): e1007492, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31834896

RESUMEN

It is well recognised that animal and plant pathogens form complex ecological communities of interacting organisms within their hosts, and there is growing interest in the health implications of such pathogen interactions. Although community ecology approaches have been used to identify pathogen interactions at the within-host scale, methodologies enabling robust identification of interactions from population-scale data such as that available from health authorities are lacking. To address this gap, we developed a statistical framework that jointly identifies interactions between multiple viruses from contemporaneous non-stationary infection time series. Our conceptual approach is derived from a Bayesian multivariate disease mapping framework. Importantly, our approach captures within- and between-year dependencies in infection risk while controlling for confounding factors such as seasonality, demographics and infection frequencies, allowing genuine pathogen interactions to be distinguished from simple correlations. We validated our framework using a broad range of synthetic data. We then applied it to diagnostic data available for five respiratory viruses co-circulating in a major urban population between 2005 and 2013: adenovirus, human coronavirus, human metapneumovirus, influenza B virus and respiratory syncytial virus. We found positive and negative covariances indicative of epidemiological interactions among specific virus pairs. This statistical framework enables a community ecology perspective to be applied to infectious disease epidemiology with important utility for public health planning and preparedness.


Asunto(s)
Interacciones Huésped-Patógeno , Modelos Biológicos , Animales , Teorema de Bayes , Biología Computacional , Simulación por Computador , Interacciones Microbiota-Huesped , Humanos , Análisis Multivariante , Informática en Salud Pública , Infecciones del Sistema Respiratorio/epidemiología , Análisis Espacio-Temporal , Factores de Tiempo , Virosis/epidemiología
17.
J Virol ; 92(23)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30209175

RESUMEN

The evolution of mammalian genomes has been shaped by interactions with endogenous retroviruses (ERVs). In this study, we investigated the distribution and diversity of ERVs in the mammalian order Perissodactyla, with a view to understanding their impact on the evolution of modern equids (family Equidae). We characterize the major ERV lineages in the horse genome in terms of their genomic distribution, ancestral genome organization, and time of activity. Our results show that subsequent to their ancestral divergence from rhinoceroses and tapirs, equids acquired four novel ERV lineages. We show that two of these ERV lineages proliferated extensively in the lineage leading to modern horses, and one contains loci that are actively transcribed in specific tissues. In addition, we show that the white rhinoceros has resisted germ line colonization by retroviruses for more than 54 million years-longer than any other extant mammalian species. The map of equine ERVs that we provide here will be of great utility to future studies aiming to investigate the potential functional roles of equine ERVs and their impact on equine evolution.IMPORTANCE ERVs in the host genome are highly informative about the long-term interactions of retroviruses and hosts. They are also interesting because they have influenced the evolution of mammalian genomes in various ways. In this study, we derive a calibrated timeline describing the process through which ERV diversity has been generated in the equine germ line. We determined the distribution and diversity of perissodactyl ERV lineages and inferred their retrotranspositional activity during evolution, thereby gaining insight into the long-term coevolutionary history of retroviruses and mammals. Our study provides a platform for future investigations to identify equine ERV loci involved in physiological processes and/or pathological conditions.


Asunto(s)
Retrovirus Endógenos/clasificación , Retrovirus Endógenos/genética , Evolución Molecular , Variación Genética , Genoma , Caballos/virología , Infecciones por Retroviridae/veterinaria , Animales , Secuencia de Bases , Linaje de la Célula , Biología Computacional , Retrovirus Endógenos/aislamiento & purificación , Genómica , Caballos/genética , Perisodáctilos/genética , Perisodáctilos/virología , Filogenia , Infecciones por Retroviridae/virología , Homología de Secuencia , Transcriptoma
18.
J Virol ; 92(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29875234

RESUMEN

Avian-origin H3N2 canine influenza virus (CIV) transferred to dogs in Asia around 2005, becoming enzootic throughout China and South Korea before reaching the United States in early 2015. To understand the posttransfer evolution and epidemiology of this virus, particularly the cause of recent and ongoing increases in incidence in the United States, we performed an integrated analysis of whole-genome sequence data from 64 newly sequenced viruses and comprehensive surveillance data. This revealed that the circulation of H3N2 CIV within the United States is typified by recurrent epidemic burst-fade-out dynamics driven by multiple introductions of virus from Asia. Although all major viral lineages displayed similar rates of genomic sequence evolution, H3N2 CIV consistently exhibited proportionally more nonsynonymous substitutions per site than those in avian reservoir viruses, which is indicative of a large-scale change in selection pressures. Despite these genotypic differences, we found no evidence of adaptive evolution or increased viral transmission, with epidemiological models indicating a basic reproductive number, R0, of between 1 and 1.5 across nearly all U.S. outbreaks, consistent with maintained but heterogeneous circulation. We propose that CIV's mode of viral circulation may have resulted in evolutionary cul-de-sacs, in which there is little opportunity for the selection of the more transmissible H3N2 CIV phenotypes necessary to enable circulation through a general dog population characterized by widespread contact heterogeneity. CIV must therefore rely on metapopulations of high host density (such as animal shelters and kennels) within the greater dog population and reintroduction from other populations or face complete epidemic extinction.IMPORTANCE The relatively recent appearance of influenza A virus (IAV) epidemics in dogs expands our understanding of IAV host range and ecology, providing useful and relevant models for understanding critical factors involved in viral emergence. Here we integrate viral whole-genome sequence analysis and comprehensive surveillance data to examine the evolution of the emerging avian-origin H3N2 canine influenza virus (CIV), particularly the factors driving ongoing circulation and recent increases in incidence of the virus within the United States. Our results provide a detailed understanding of how H3N2 CIV achieves sustained circulation within the United States despite widespread host contact heterogeneity and recurrent epidemic fade-out. Moreover, our findings suggest that the types and intensities of selection pressures an emerging virus experiences are highly dependent on host population structure and ecology and may inhibit an emerging virus from acquiring sustained epidemic or pandemic circulation.


Asunto(s)
Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/virología , Epidemias , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Infecciones por Orthomyxoviridae/veterinaria , Animales , Número Básico de Reproducción , Transmisión de Enfermedad Infecciosa , Perros , Epidemiología Molecular , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Filogenia , Selección Genética , Análisis de Secuencia de ADN , Estados Unidos/epidemiología , Secuenciación Completa del Genoma
19.
J Virol ; 91(22)2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28835506

RESUMEN

Canine influenza viruses (CIVs) are the causative agents of canine influenza, a contagious respiratory disease in dogs, and include the equine-origin H3N8 and the avian-origin H3N2 viruses. Influenza A virus (IAV) nonstructural protein 1 (NS1) is a virulence factor essential for counteracting the innate immune response. Here, we evaluated the ability of H3N8 CIV NS1 to inhibit host innate immune responses. We found that H3N8 CIV NS1 was able to efficiently counteract interferon (IFN) responses but was unable to block general gene expression in human or canine cells. Such ability was restored by a single amino acid substitution in position 186 (K186E) that resulted in NS1 binding to the 30-kDa subunit of the cleavage and polyadenylation specificity factor (CPSF30), a cellular protein involved in pre-mRNA processing. We also examined the frequency distribution of K186 and E186 among H3N8 CIVs and equine influenza viruses (EIVs), the ancestors of H3N8 CIV, and experimentally determined the impact of amino acid 186 in the ability of different CIV and EIV NS1s to inhibit general gene expression. In all cases, the presence of E186 was responsible for the control of host gene expression. In contrast, the NS1 protein of H3N2 CIV harbors E186 and blocks general gene expression in canine cells. Altogether, our results confirm previous studies on the strain-dependent ability of NS1 to block general gene expression. Moreover, the observed polymorphism on amino acid 186 between H3N8 and H3N2 CIVs might be the result of adaptive changes acquired during long-term circulation of avian-origin IAVs in mammals.IMPORTANCE Canine influenza is a respiratory disease of dogs caused by two CIV subtypes, the H3N8 and H3N2 viruses, of equine and avian origins, respectively. Influenza NS1 is the main viral factor responsible for the control of host innate immune responses, and changes in NS1 can play an important role in host adaptation. Here we assessed the ability of H3N8 CIV NS1 to inhibit host innate immune responses and gene expression. The H3N8 CIV NS1 did not block host gene expression, but this activity was restored by a single amino acid substitution (K186E), which was responsible for NS1 binding to the host factor CPSF30. In contrast, the H3N2 CIV NS1, which contains E186, blocks general gene expression. Our results suggest that the ability to block host gene expression is not required for influenza virus replication in mammals but might be important in the long-term adaptation of avian-origin influenza viruses to mammals.


Asunto(s)
Sustitución de Aminoácidos , Regulación de la Expresión Génica/inmunología , Interacciones Huésped-Patógeno/inmunología , Subtipo H3N8 del Virus de la Influenza A/fisiología , Mutación Missense , Infecciones por Orthomyxoviridae/inmunología , Proteínas no Estructurales Virales/inmunología , Animales , Perros , Células HEK293 , Interacciones Huésped-Patógeno/genética , Humanos , Células de Riñón Canino Madin Darby , Infecciones por Orthomyxoviridae/genética , Proteínas no Estructurales Virales/genética
20.
J Virol ; 91(4)2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27928017

RESUMEN

Canine influenza is a respiratory disease of dogs caused by canine influenza virus (CIV). CIV subtypes responsible for influenza in dogs include H3N8, which originated from the transfer of H3N8 equine influenza virus to dogs; and the H3N2 CIV, which is an avian-origin virus that adapted to infect dogs. Influenza infections are most effectively prevented through vaccination to reduce transmission and future infection. Currently, only inactivated influenza vaccines (IIVs) are available for the prevention of CIV in dogs. However, the efficacy of IIVs is suboptimal, and novel approaches are necessary for the prevention of disease caused by this canine respiratory pathogen. Using reverse genetics techniques, we have developed a live-attenuated CIV vaccine (LACIV) for the prevention of H3N8 CIV. The H3N8 LACIV replicates efficiently in canine cells at 33°C but is impaired at temperatures of 37 to 39°C and was attenuated compared to wild-type H3N8 CIV in vivo and ex vivo The LACIV was able to induce protection against H3N8 CIV challenge with a single intranasal inoculation in mice. Immunogenicity and protection efficacy were better than that observed with a commercial CIV H3N8 IIV but provided limited cross-reactive immunity and heterologous protection against H3N2 CIV. These results demonstrate the feasibility of implementing a LAIV approach for the prevention and control of H3N8 CIV in dogs and suggest the need for a new LAIV for the control of H3N2 CIV. IMPORTANCE: Two influenza A virus subtypes has been reported in dogs in the last 16 years: the canine influenza viruses (CIV) H3N8 and H3N2 of equine and avian origins, respectively. To date, only inactivated influenza vaccines (IIVs) are available to prevent CIV infections. Here, we report the generation of a recombinant, temperature-sensitive H3N8 CIV as a live-attenuated influenza vaccine (LAIV), which was attenuated in mice and dog tracheal, explants compared to CIV H3N8 wild type. A single dose of H3N8 LACIV showed immunogenicity and protection against a homologous challenge that was better than that conferred with an H3N8 IIV, demonstrating the feasibility of implementing a LAIV approach for the improved control of H3N8 CIV infections in dogs.


Asunto(s)
Enfermedades de los Perros/prevención & control , Subtipo H3N8 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/veterinaria , Vacunas Atenuadas/inmunología , Animales , Anticuerpos Antivirales/inmunología , Antígenos Virales/genética , Antígenos Virales/inmunología , Línea Celular , Reacciones Cruzadas , Perros , Femenino , Inmunización , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H3N8 del Virus de la Influenza A/genética , Vacunas contra la Influenza/administración & dosificación , Ratones , Mutación , Vacunas Atenuadas/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA