Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Exp Cell Res ; 408(2): 112880, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34655601

RESUMEN

Understanding the regulatory mechanism by which cardiomyocyte proliferation transitions to endoreplication and cell cycle arrest during the neonatal period is crucial for identifying proproliferative factors and developing regenerative therapies. We used a transgenic mouse model based on the fluorescent ubiquitination-based cell cycle indicator (FUCCI) system to isolate and characterize cycling cardiomyocytes at different cell cycle stages at a single-cell resolution. Single-cell transcriptome analysis of cycling and noncycling cardiomyocytes was performed at postnatal days 0 (P0) and 7 (P7). The FUCCI system proved to be efficient for the identification of cycling cardiomyocytes with the highest mitotic activity at birth, followed by a gradual decline in the number of cycling and mitotic cardiomyocytes during the neonatal period. Cardiomyocytes showed premature cell cycle exit at G1/S shortly after birth and delayed G1/S progression during endoreplication at P7. Single-cell RNA-seq confirmed previously described signaling pathways involved in cardiomyocyte proliferation (Erbb2 and Hippo/YAP), and maturation-related transcriptional changes during postnatal development, including the metabolic switch from glycolysis to fatty acid oxidation in cardiomyocytes. Importantly, we generated transcriptional profiles specific to cell division and endoreplication in cardiomyocytes at different developmental stages that may facilitate the identification of genes important for adult cardiomyocyte proliferation and heart regeneration. In conclusion, the FUCCI mouse provides a valuable system to study cardiomyocyte cell cycle activity at single cell resolution that can help to decipher the switch from cardiomyocyte proliferation to endoreplication, and to revert this process to facilitate endogenous repair.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Proliferación Celular/genética , Transcriptoma/genética , Ubiquitinación/genética , Animales , Ciclo Celular/genética , Humanos , Ratones , Ratones Transgénicos/genética , Miocitos Cardíacos/patología , Transducción de Señal/genética , Análisis de la Célula Individual
2.
Int J Mol Sci ; 20(4)2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30769810

RESUMEN

Several studies showed that hydroxyethyl starch (HES), a synthetic colloid used in volume replacement therapies, interferes with leukocyte-endothelium interactions. Although still unclear, the mechanism seems to involve the inhibition of neutrophils' integrin. With the aim to provide direct evidence of the binding of HES to neutrophils and to investigate the influence of HES on neutrophil chemotaxis, we isolated and treated the cells with different concentrations of fluorescein-conjugated HES (HES-FITC), with or without different stimuli (N-Formylmethionine-leucyl-phenylalanine, fMLP, or IL-8). HES internalization was evaluated by trypan blue quenching and ammonium chloride treatment. Chemotaxis was evaluated by under-agarose assay after pretreatment of the cells with HES or a balanced saline solution. The integrin interacting with HES was identified by using specific blocking antibodies. Our results showed that HES-FITC binds to the plasma membrane of neutrophils without being internalized. Additionally, the cell-associated fluorescence increased after stimulation of neutrophils with fMLP (p < 0.01) but not IL-8. HES treatment impaired the chemotaxis only towards fMLP, event mainly ascribed to the inhibition of CD-11b (Mac-1 integrin) activity. Therefore, the observed effect mediated by HES should be taken into account during volume replacement therapies. Thus, HES treatment could be advantageous in clinical conditions where a low activation/recruitment of neutrophils may be beneficial, but may be harmful when unimpaired immune functions are mandatory.


Asunto(s)
Quimiotaxis de Leucocito/efectos de los fármacos , Derivados de Hidroxietil Almidón/farmacología , Antígeno de Macrófago-1/genética , Neutrófilos/efectos de los fármacos , Quimiotaxis de Leucocito/genética , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/farmacología , Humanos , Derivados de Hidroxietil Almidón/química , Interleucina-8/química , Interleucina-8/metabolismo , Antígeno de Macrófago-1/química , N-Formilmetionina Leucil-Fenilalanina/farmacología , Neutrófilos/química
3.
Front Cardiovasc Med ; 9: 840147, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35548410

RESUMEN

One of the major goals in cardiac regeneration research is to replace lost ventricular tissue with new cardiomyocytes. However, cardiomyocyte proliferation drops to low levels in neonatal hearts and is no longer efficient in compensating for the loss of functional myocardium in heart disease. We generated a human induced pluripotent stem cell (iPSC)-derived cardiomyocyte-specific cell cycle indicator system (TNNT2-FUCCI) to characterize regular and aberrant cardiomyocyte cycle dynamics. We visualized cell cycle progression in TNNT2-FUCCI and found G2 cycle arrest in endoreplicating cardiomyocytes. Moreover, we devised a live-cell compound screening platform to identify pro-proliferative drug candidates. We found that the alpha-adrenergic receptor agonist clonidine induced cardiomyocyte proliferation in vitro and increased cardiomyocyte cell cycle entry in neonatal mice. In conclusion, the TNNT2-FUCCI system is a versatile tool to characterize cardiomyocyte cell cycle dynamics and identify pro-proliferative candidates with regenerative potential in the mammalian heart.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA