Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nat Rev Genet ; 24(5): 276-294, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36418462

RESUMEN

RNA-binding proteins (RBPs) regulate essentially every event in the lifetime of an RNA molecule, from its production to its destruction. Whereas much has been learned about RNA sequence specificity and general functions of individual RBPs, the ways in which numerous RBPs instruct a much smaller number of effector molecules, that is, the core engines of RNA processing, as to where, when and how to act remain largely speculative. Here, we survey the known modes of communication between RBPs and their effectors with a particular focus on converging RBP-effector interactions and their roles in reducing the complexity of RNA networks. We discern the emerging unifying principles and discuss their utility in our understanding of RBP function, regulation of biological processes and contribution to human disease.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN , Humanos , ARN/genética , ARN/metabolismo , Proteínas de Unión al ARN/genética
2.
Nat Rev Mol Cell Biol ; 18(8): 517-527, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28512349

RESUMEN

In 1959, while analysing the bacterial flagellar proteins, Ambler and Rees observed an unknown species of amino acid that they eventually identified as methylated lysine. Over half a century later, protein methylation is known to have a regulatory role in many essential cellular processes that range from gene transcription to signal transduction. However, the road to this now burgeoning research field was obstacle-ridden, not least because of the inconspicuous nature of the methyl mark itself. Here, we chronicle the milestone achievements and discuss the future of protein methylation research.


Asunto(s)
Proteínas Bacterianas/metabolismo , Metilación , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología
3.
Cell ; 157(4): 869-81, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24813610

RESUMEN

Fragile X syndrome, a common form of inherited intellectual disability, is caused by loss of the fragile X mental retardation protein FMRP. FMRP is present predominantly in the cytoplasm, where it regulates translation of proteins that are important for synaptic function. We identify FMRP as a chromatin-binding protein that functions in the DNA damage response (DDR). Specifically, we show that FMRP binds chromatin through its tandem Tudor (Agenet) domain in vitro and associates with chromatin in vivo. We also demonstrate that FMRP participates in the DDR in a chromatin-binding-dependent manner. The DDR machinery is known to play important roles in developmental processes such as gametogenesis. We show that FMRP occupies meiotic chromosomes and regulates the dynamics of the DDR machinery during mouse spermatogenesis. These findings suggest that nuclear FMRP regulates genomic stability at the chromatin interface and may impact gametogenesis and some developmental aspects of fragile X syndrome.


Asunto(s)
Espermatogénesis , Animales , Cromatina/metabolismo , Emparejamiento Cromosómico , Daño del ADN , Embrión de Mamíferos/citología , Fibroblastos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Hipocampo/citología , Histonas/metabolismo , Humanos , Masculino , Meiosis , Ratones , Ratones Noqueados , Mutación , Neuronas/metabolismo , Profase , Receptores AMPA/metabolismo
4.
Cell ; 151(5): 1097-112, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23178126

RESUMEN

Microcephaly is a neurodevelopmental disorder causing significantly reduced cerebral cortex size. Many known microcephaly gene products localize to centrosomes, regulating cell fate and proliferation. Here, we identify and characterize a nuclear zinc finger protein, ZNF335/NIF-1, as a causative gene for severe microcephaly, small somatic size, and neonatal death. Znf335 null mice are embryonically lethal, and conditional knockout leads to severely reduced cortical size. RNA-interference and postmortem human studies show that ZNF335 is essential for neural progenitor self-renewal, neurogenesis, and neuronal differentiation. ZNF335 is a component of a vertebrate-specific, trithorax H3K4-methylation complex, directly regulating REST/NRSF, a master regulator of neural gene expression and cell fate, as well as other essential neural-specific genes. Our results reveal ZNF335 as an essential link between H3K4 complexes and REST/NRSF and provide the first direct genetic evidence that this pathway regulates human neurogenesis and neuronal differentiation.


Asunto(s)
Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Proteínas Nucleares/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Proteínas de Unión al ADN , Femenino , Técnicas de Silenciamiento del Gen , Genes Letales , N-Metiltransferasa de Histona-Lisina , Humanos , Masculino , Ratones , Ratones Noqueados , Microcefalia/metabolismo , Complejos Multiproteicos/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción
5.
J Biol Chem ; 299(1): 102788, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36509146

RESUMEN

Mechanistic target of rapamycin (mTOR) is a protein kinase that integrates multiple inputs to regulate anabolic cellular processes. For example, mTOR complex 1 (mTORC1) has key functions in growth control, autophagy, and metabolism. However, much less is known about the signaling components that act downstream of mTORC1 to regulate cellular morphogenesis. Here, we show that the RNA-binding protein Unkempt, a key regulator of cellular morphogenesis, is a novel substrate of mTORC1. We show that Unkempt phosphorylation is regulated by nutrient levels and growth factors via mTORC1. To analyze Unkempt phosphorylation, we immunoprecipitated Unkempt from cells in the presence or the absence of the mTORC1 inhibitor rapamycin and used mass spectrometry to identify mTORC1-dependent phosphorylated residues. This analysis showed that mTORC1-dependent phosphorylation is concentrated in a serine-rich intrinsically disordered region in the C-terminal half of Unkempt. We also found that Unkempt physically interacts with and is directly phosphorylated by mTORC1 through binding to the regulatory-associated protein of mTOR, Raptor. Furthermore, analysis in the developing brain of mice lacking TSC1 expression showed that phosphorylation of Unkempt is mTORC1 dependent in vivo. Finally, mutation analysis of key serine/threonine residues in the serine-rich region indicates that phosphorylation inhibits the ability of Unkempt to induce a bipolar morphology. Phosphorylation within this serine-rich region thus profoundly affects the ability of Unkempt to regulate cellular morphogenesis. Taken together, our findings reveal a novel molecular link between mTORC1 signaling and cellular morphogenesis.


Asunto(s)
Proteínas Portadoras , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteína Reguladora Asociada a mTOR , Serina-Treonina Quinasas TOR , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Línea Celular , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Morfogénesis , Fosforilación , Serina/metabolismo , Sirolimus , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismo , Procesos de Crecimiento Celular , Proteínas Portadoras/metabolismo
6.
Plant Cell Environ ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007549

RESUMEN

Aluminum-dependent stoppage of root growth requires the DNA damage response (DDR) pathway including the p53-like transcription factor SUPPRESSOR OF GAMMA RADIATION 1 (SOG1), which promotes terminal differentiation of the root tip in response to Al dependent cell death. Transcriptomic analyses identified Al-induced SOG1-regulated targets as candidate mediators of this growth arrest. Analysis of these factors either as loss-of-function mutants or by overexpression in the als3-1 background shows ERF115, which is a key transcription factor that in other scenarios is rate-limiting for damaged stem cell replenishment, instead participates in transition from an actively growing root to one that has terminally differentiated in response to Al toxicity. This is supported by a loss-of-function erf115 mutant raising the threshold of Al required to promote terminal differentiation of Al hypersensitive als3-1. Consistent with its key role in stoppage of root growth, a putative ERF115 barley ortholog is also upregulated following Al exposure, suggesting a conserved role for this ATR-dependent pathway in Al response. In contrast to other DNA damage agents, these results show that ERF115 and likely related family members are important determinants of terminal differentiation of the root tip following Al exposure and central outputs of the SOG1-mediated pathway in Al response.

7.
Mol Cell ; 57(6): 957-970, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25684206

RESUMEN

Lysine-specific demethylase 1 (LSD1) has been reported to repress and activate transcription by mediating histone H3K4me1/2 and H3K9me1/2 demethylation, respectively. The molecular mechanism that underlies this dual substrate specificity has remained unknown. Here we report that an isoform of LSD1, LSD1+8a, does not have the intrinsic capability to demethylate H3K4me2. Instead, LSD1+8a mediates H3K9me2 demethylation in collaboration with supervillin (SVIL), a new LSD1+8a interacting protein. LSD1+8a knockdown increases H3K9me2, but not H3K4me2, levels at its target promoters and compromises neuronal differentiation. Importantly, SVIL co-localizes to LSD1+8a-bound promoters, and its knockdown mimics the impact of LSD1+8a loss, supporting SVIL as a cofactor for LSD1+8a in neuronal cells. These findings provide insight into mechanisms by which LSD1 mediates H3K9me demethylation and highlight alternative splicing as a means by which LSD1 acquires selective substrate specificities (H3K9 versus H3K4) to differentially control specific gene expression programs in neurons.


Asunto(s)
Histona Demetilasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Neuronas/metabolismo , Empalme Alternativo , Diferenciación Celular , Movimiento Celular , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HeLa , Histona Demetilasas/genética , Histonas/genética , Histonas/metabolismo , Humanos , Lisina/metabolismo , Proteínas de la Membrana/genética , Metilación , Proteínas de Microfilamentos/genética , Neuronas/citología , Regiones Promotoras Genéticas , Isoformas de Proteínas/metabolismo
8.
Genes Dev ; 29(5): 501-12, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25737280

RESUMEN

Cellular morphology is an essential determinant of cellular function in all kingdoms of life, yet little is known about how cell shape is controlled. Here we describe a molecular program that controls the early morphology of neurons through a metazoan-specific zinc finger protein, Unkempt. Depletion of Unkempt in mouse embryos disrupts the shape of migrating neurons, while ectopic expression confers neuronal-like morphology to cells of different nonneuronal lineages. We found that Unkempt is a sequence-specific RNA-binding protein and identified its precise binding sites within coding regions of mRNAs linked to protein metabolism and trafficking. RNA binding is required for Unkempt-induced remodeling of cellular shape and is directly coupled to a reduced production of the encoded proteins. These findings link post-transcriptional regulation of gene expression with cellular shape and have general implications for the development and disease of multicellular organisms.


Asunto(s)
Forma de la Célula/genética , Regulación del Desarrollo de la Expresión Génica , Neuronas/citología , Animales , Encéfalo/metabolismo , Línea Celular , Embrión de Mamíferos , Perfilación de la Expresión Génica , Células HeLa , Humanos , Ratones , Unión Proteica , ARN Mensajero
9.
Nature ; 528(7581): 218-24, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26659182

RESUMEN

Cellular differentiation involves profound remodelling of chromatic landscapes, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNA interference (RNAi) screens targeting chromatin factors during transcription-factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPS cells). Subunits of the chromatin assembly factor-1 (CAF-1) complex, including Chaf1a and Chaf1b, emerged as the most prominent hits from both screens, followed by modulators of lysine sumoylation and heterochromatin maintenance. Optimal modulation of both CAF-1 and transcription factor levels increased reprogramming efficiency by several orders of magnitude and facilitated iPS cell formation in as little as 4 days. Mechanistically, CAF-1 suppression led to a more accessible chromatin structure at enhancer elements early during reprogramming. These changes were accompanied by a decrease in somatic heterochromatin domains, increased binding of Sox2 to pluripotency-specific targets and activation of associated genes. Notably, suppression of CAF-1 also enhanced the direct conversion of B cells into macrophages and fibroblasts into neurons. Together, our findings reveal the histone chaperone CAF-1 to be a novel regulator of somatic cell identity during transcription-factor-induced cell-fate transitions and provide a potential strategy to modulate cellular plasticity in a regenerative setting.


Asunto(s)
Reprogramación Celular/genética , Factor 1 de Ensamblaje de la Cromatina/metabolismo , Animales , Células Cultivadas , Cromatina/metabolismo , Factor 1 de Ensamblaje de la Cromatina/antagonistas & inhibidores , Factor 1 de Ensamblaje de la Cromatina/genética , Regulación de la Expresión Génica/genética , Heterocromatina/metabolismo , Ratones , Nucleosomas/metabolismo , Interferencia de ARN , Transducción Genética
10.
Mol Syst Biol ; 10: 760, 2014 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-25403753

RESUMEN

Advances in cellular reprogramming and stem cell differentiation now enable ex vivo studies of human neuronal differentiation. However, it remains challenging to elucidate the underlying regulatory programs because differentiation protocols are laborious and often result in low neuron yields. Here, we overexpressed two Neurogenin transcription factors in human-induced pluripotent stem cells and obtained neurons with bipolar morphology in 4 days, at greater than 90% purity. The high purity enabled mRNA and microRNA expression profiling during neurogenesis, thus revealing the genetic programs involved in the rapid transition from stem cell to neuron. The resulting cells exhibited transcriptional, morphological and functional signatures of differentiated neurons, with greatest transcriptional similarity to prenatal human brain samples. Our analysis revealed a network of key transcription factors and microRNAs that promoted loss of pluripotency and rapid neurogenesis via progenitor states. Perturbations of key transcription factors affected homogeneity and phenotypic properties of the resulting neurons, suggesting that a systems-level view of the molecular biology of differentiation may guide subsequent manipulation of human stem cells to rapidly obtain diverse neuronal types.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Activación Transcripcional , Encéfalo/embriología , Encéfalo/metabolismo , Diferenciación Celular , Reprogramación Celular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos
11.
Nat Commun ; 15(1): 3159, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605040

RESUMEN

How RNA-binding proteins (RBPs) convey regulatory instructions to the core effectors of RNA processing is unclear. Here, we document the existence and functions of a multivalent RBP-effector interface. We show that the effector interface of a conserved RBP with an essential role in metazoan development, Unkempt, is mediated by a novel type of 'dual-purpose' peptide motifs that can contact two different surfaces of interacting proteins. Unexpectedly, we find that the multivalent contacts do not merely serve effector recruitment but are required for the accuracy of RNA recognition by Unkempt. Systems analyses reveal that multivalent RBP-effector contacts can repurpose the principal activity of an effector for a different function, as we demonstrate for the reuse of the central eukaryotic mRNA decay factor CCR4-NOT in translational control. Our study establishes the molecular assembly and functional principles of an RBP-effector interface.


Asunto(s)
Proteínas de Unión al ARN , ARN , Animales , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Procesamiento Postranscripcional del ARN , Péptidos/metabolismo
12.
bioRxiv ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38352439

RESUMEN

While evolution is often considered from a DNA- and protein-centric view, RNA-based regulation can also impact gene expression and protein sequences. Here we examined interspecies differences in RNA-protein interactions using the conserved neuronal RNA binding protein, Unkempt (UNK) as model. We find that roughly half of mRNAs bound in human are also bound in mouse. Unexpectedly, even when transcript-level binding was conserved across species differential motif usage was prevalent. To understand the biochemical basis of UNK-RNA interactions, we reconstituted the human and mouse UNK-RNA interactomes using a high-throughput biochemical assay. We uncover detailed features driving binding, show that in vivo patterns are captured in vitro, find that highly conserved sites are the strongest bound, and associate binding strength with downstream regulation. Furthermore, subtle sequence differences surrounding motifs are key determinants of species-specific binding. We highlight the complex features driving protein-RNA interactions and how these evolve to confer species-specific regulation.

13.
bioRxiv ; 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37790431

RESUMEN

RNA-binding proteins (RBPs) are key regulators of gene expression, but how RBPs convey regulatory instructions to the core effectors of RNA processing is unclear. Here we document the existence and functions of a multivalent RBP-effector interface. We show that the effector interface of a deeply conserved RBP with an essential role in metazoan development, Unkempt, is mediated by a novel type of 'dual-purpose' peptide motifs that can contact two different surfaces of interacting proteins. Unexpectedly, we find that the multivalent contacts do not merely serve effector recruitment but are required for the accuracy of RNA recognition by the recruiting RBP. Systems analyses reveal that multivalent RBP-effector contacts can repurpose the principal activity of an effector for a different function, as we demonstrate for reuse of the central eukaryotic mRNA decay factor CCR4-NOT in translational control. Our study establishes the molecular assembly and functional principles of an RBP-effector interface, with implications for the evolution and function of RBP-operated regulatory networks.

14.
Nat Commun ; 13(1): 2350, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35487911

RESUMEN

Cell fate commitment is driven by dynamic changes in chromatin architecture and activity of lineage-specific transcription factors (TFs). The chromatin assembly factor-1 (CAF-1) is a histone chaperone that regulates chromatin architecture by facilitating nucleosome assembly during DNA replication. Accumulating evidence supports a substantial role of CAF-1 in cell fate maintenance, but the mechanisms by which CAF-1 restricts lineage choice remain poorly understood. Here, we investigate how CAF-1 influences chromatin dynamics and TF activity during lineage differentiation. We show that CAF-1 suppression triggers rapid differentiation of myeloid stem and progenitor cells into a mixed lineage state. We find that CAF-1 sustains lineage fidelity by controlling chromatin accessibility at specific loci, and limiting the binding of ELF1 TF at newly-accessible diverging regulatory elements. Together, our findings decipher key traits of chromatin accessibility that sustain lineage integrity and point to a powerful strategy for dissecting transcriptional circuits central to cell fate commitment.


Asunto(s)
Cromatina , Chaperonas de Histonas , Factor 1 de Ensamblaje de la Cromatina/genética , Factor 1 de Ensamblaje de la Cromatina/metabolismo , Cromosomas/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo
15.
Front Cell Dev Biol ; 9: 654915, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33959610

RESUMEN

An expanding repertoire of histone variants and specialized histone chaperone partners showcases the versatility of nucleosome assembly during different cellular processes. Recent research has suggested an integral role of nucleosome assembly pathways in both maintaining cell identity and influencing cell fate decisions during development and normal homeostasis. Mutations and altered expression profiles of histones and corresponding histone chaperone partners are associated with developmental defects and cancer. Here, we discuss the spatiotemporal deposition mechanisms of the Histone H3 variants and their influence on mammalian cell fate during development. We focus on H3 given its profound effect on nucleosome stability and its recently characterized deposition pathways. We propose that differences in deposition of H3 variants are largely dependent on the phase of the cell cycle and cellular potency but are also affected by cellular stress and changes in cell fate. We also discuss the utility of modern technologies in dissecting the spatiotemporal control of H3 variant deposition, and how this could shed light on the mechanisms of cell identity maintenance and lineage commitment. The current knowledge and future studies will help us better understand how organisms employ nucleosome dynamics in health, disease, and aging. Ultimately, these pathways can be manipulated to induce cell fate change in a therapeutic setting depending on the cellular context.

16.
Sci Rep ; 11(1): 16299, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34381067

RESUMEN

Correct orchestration of nervous system development is a profound challenge that involves coordination of complex molecular and cellular processes. Mechanistic target of rapamycin (mTOR) signaling is a key regulator of nervous system development and synaptic function. The mTOR kinase is a hub for sensing inputs including growth factor signaling, nutrients and energy levels. Activation of mTOR signaling causes diseases with severe neurological manifestations, such as tuberous sclerosis complex and focal cortical dysplasia. However, the molecular mechanisms by which mTOR signaling regulates nervous system development and function are poorly understood. Unkempt is a conserved zinc finger/RING domain protein that regulates neurogenesis downstream of mTOR signaling in Drosophila. Unkempt also directly interacts with the mTOR complex I component Raptor. Here we describe the generation and characterisation of mice with a conditional knockout of Unkempt (UnkcKO) in the nervous system. Loss of Unkempt reduces Raptor protein levels in the embryonic nervous system but does not affect downstream mTORC1 targets. We also show that nervous system development occurs normally in UnkcKO mice. However, we find that Unkempt is expressed in the adult cerebellum and hippocampus and behavioural analyses show that UnkcKO mice have improved memory formation and cognitive flexibility to re-learn. Further understanding of the role of Unkempt in the nervous system will provide novel mechanistic insight into the role of mTOR signaling in learning and memory.


Asunto(s)
Cognición/fisiología , Proteínas de Unión al ADN/metabolismo , Malformaciones del Desarrollo Cortical/metabolismo , Dedos de Zinc/fisiología , Animales , Cerebelo/metabolismo , Drosophila/metabolismo , Células HeLa , Hipocampo/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurogénesis/fisiología , Transducción de Señal/fisiología
17.
Nat Cell Biol ; 23(4): 424-436, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33820973

RESUMEN

Although high-throughput RNA sequencing (RNA-seq) has greatly advanced small non-coding RNA (sncRNA) discovery, the currently widely used complementary DNA library construction protocol generates biased sequencing results. This is partially due to RNA modifications that interfere with adapter ligation and reverse transcription processes, which prevent the detection of sncRNAs bearing these modifications. Here, we present PANDORA-seq (panoramic RNA display by overcoming RNA modification aborted sequencing), employing a combinatorial enzymatic treatment to remove key RNA modifications that block adapter ligation and reverse transcription. PANDORA-seq identified abundant modified sncRNAs-mostly transfer RNA-derived small RNAs (tsRNAs) and ribosomal RNA-derived small RNAs (rsRNAs)-that were previously undetected, exhibiting tissue-specific expression across mouse brain, liver, spleen and sperm, as well as cell-specific expression across embryonic stem cells (ESCs) and HeLa cells. Using PANDORA-seq, we revealed unprecedented landscapes of microRNA, tsRNA and rsRNA dynamics during the generation of induced pluripotent stem cells. Importantly, tsRNAs and rsRNAs that are downregulated during somatic cell reprogramming impact cellular translation in ESCs, suggesting a role in lineage differentiation.


Asunto(s)
Procesamiento Postranscripcional del ARN/genética , ARN Pequeño no Traducido/genética , RNA-Seq , Transcriptoma/genética , ADN Complementario/genética , Células HeLa , Humanos , MicroARNs/genética , ARN Ribosómico/genética
19.
BMC Genomics ; 10: 323, 2009 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-19607732

RESUMEN

BACKGROUND: The B cell antigen receptor (BCR) is a signaling complex that mediates the differentiation of stage-specific cell fate decisions in B lymphocytes. While several studies have shown differences in signal transduction components as being key to contrasting phenotypic outcomes, little is known about the differential BCR-triggered gene transcription downstream of the signaling cascades. RESULTS: Here we define the transcriptional changes that underlie BCR-induced apoptosis and proliferation of immature and mature B cells, respectively. Comparative genome-wide expression profiling identified 24 genes that discriminated between the early responses of the two cell types to BCR stimulation. Using mice with a conditional Myc-deletion, we validated the microarray data by demonstrating that Myc is critical to promoting BCR-triggered B-cell proliferation. We further investigated the Myc-dependent molecular mechanisms and found that Myc promotes a BCR-dependent clonal expansion of mature B cells by inducing proliferation and inhibiting differentiation. CONCLUSION: This work provides the first comprehensive analysis of the early transcriptional events that lead to either deletion or clonal expansion of B cells upon antigen recognition, and demonstrates that Myc functions as the hub of a transcriptional network that control B-cell fate in the periphery.


Asunto(s)
Linfocitos B/citología , Redes Reguladoras de Genes , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal , Animales , Apoptosis , Linfocitos B/inmunología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Hibridación Genómica Comparativa , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/genética , Receptores de Antígenos de Linfocitos B/inmunología
20.
Nat Struct Mol Biol ; 23(1): 16-23, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26641712

RESUMEN

Unkempt is an evolutionarily conserved RNA-binding protein that regulates translation of its target genes and is required for the establishment of the early bipolar neuronal morphology. Here we determined the X-ray crystal structure of mouse Unkempt and show that its six CCCH zinc fingers (ZnFs) form two compact clusters, ZnF1-3 and ZnF4-6, that recognize distinct trinucleotide RNA substrates. Both ZnF clusters adopt a similar overall topology and use distinct recognition principles to target specific RNA sequences. Structure-guided point mutations reduce the RNA binding affinity of Unkempt both in vitro and in vivo, ablate Unkempt's translational control and impair the ability of Unkempt to induce a bipolar cellular morphology. Our study unravels a new mode of RNA sequence recognition by clusters of CCCH ZnFs that is critical for post-transcriptional control of neuronal morphology.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Motivos de Nucleótidos , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Dedos de Zinc , Animales , Cristalografía por Rayos X , Ratones , Modelos Moleculares , Unión Proteica , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA