Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Neurol Sci ; 33(1): 195-9, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21598008

RESUMEN

The neuroprotective effect of coenzyme Q(10) (CoQ(10)) has been reported in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. In this study, we investigated whether oral administration of CoQ(10) could protect the striatal dopaminergic (DAergic) nerve terminals against MPTP-induced toxicity in C57BL/6N mice using immunoisolation technique for DAergic synaptosomes. CoQ(10) significantly attenuated decrease in dopamine transporter as well as in synaptophysin and actin protein levels in DAergic synaptosomes from MPTP-treated mice. The effect of CoQ(10) was also observed in crude synaptosomes fraction, but not in homogenate. Our results indicate that the nerve terminals are a site for the action of CoQ(10) against the MPTP-induced DAergic neurodegeneration.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Intoxicación por MPTP/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Ubiquinona/farmacología , Animales , Cuerpo Estriado/patología , Neuronas Dopaminérgicas/patología , Intoxicación por MPTP/patología , Masculino , Ratones , Fármacos Neuroprotectores/uso terapéutico , Ubiquinona/uso terapéutico
2.
J Biol Chem ; 284(50): 35073-8, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-19843525

RESUMEN

The vesicular inhibitory amino acid transporter (VIAAT) is a synaptic vesicle protein responsible for the vesicular storage of gamma-aminobutyrate (GABA) and glycine which plays an essential role in GABAergic and glycinergic neurotransmission. The transport mechanism of VIAAT remains largely unknown. Here, we show that proteoliposomes containing purified VIAAT actively took up GABA upon formation of membrane potential (Deltapsi) (positive inside) but not DeltapH. VIAAT-mediated GABA uptake had an absolute requirement for Cl(-) and actually accompanied Cl(-) movement. Kinetic analysis indicated that one GABA molecule and two Cl(-) equivalents were transported during one transport cycle. VIAAT in which Glu(213) was specifically mutated to alanine completely lost the ability to take up both GABA and Cl(-). Essentially the same results were obtained with glycine, another substrate of VIAAT. These results demonstrated that VIAAT is a vesicular Cl(-) transporter that co-transports Cl(-) with GABA or glycine in a Deltapsi dependent manner. It is concluded that Cl(-) plays an essential role in vesicular storage of GABA and glycine.


Asunto(s)
Cloruros/metabolismo , Simportadores/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Glicina/metabolismo , Ionóforos/metabolismo , Liposomas/metabolismo , Potenciales de la Membrana/fisiología , Ratas , Simportadores/genética , Valinomicina/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética
3.
J Neurosci ; 28(43): 10852-63, 2008 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-18945893

RESUMEN

Glutamate transporters are expressed throughout the CNS where their major role is to clear released glutamate from presynaptic terminals. Here, we report a novel function of the transporter in rat pinealocytes. This electrogenic transporter conducted inward current in response to L-glutamate and L- or D-aspartate and depolarized the membrane in patch-clamp experiments. Ca2+ imaging demonstrated that the transporter-mediated depolarization induced a significant Ca2+ influx through voltage-gated Ca2+ channels. The Ca2+ rise finally evoked glutamate exocytosis as detected by carbon-fiber amperometry and by HPLC. In pineal slices with densely packed pinealocytes, glutamate released from the cells effectively activated glutamate transporters in neighboring cells. The Ca2+ signal generated by KCl depolarization or acetylcholine propagated through several cell layers by virtue of the regenerative "glutamate-induced glutamate release." Therefore, we suggest that glutamate transporters mediate synchronized elevation of L-glutamate and thereby efficiently downregulate melatonin secretion via previously identified inhibitory metabotropic glutamate receptors in the pineal gland.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/fisiología , Ácido Glutámico/metabolismo , Glándula Pineal/metabolismo , Sistema de Transporte de Aminoácidos X-AG/antagonistas & inhibidores , Animales , Ácido Aspártico/farmacología , Calcio/metabolismo , Células Cultivadas , Cesio/farmacología , Cloruros/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Exocitosis/efectos de los fármacos , Exocitosis/fisiología , Ácido Glutámico/farmacología , Técnicas In Vitro , Ácido Kaínico/análogos & derivados , Ácido Kaínico/farmacología , Macrólidos/farmacología , Magnesio/farmacología , Masculino , Melatonina/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Glándula Pineal/citología , Cloruro de Potasio/farmacología , Ratas , Ratas Sprague-Dawley
4.
Neurosci Res ; 63(1): 72-5, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18977253

RESUMEN

We evaluated the effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in C57BL/6N mice fed a magnesium (Mg(2+))-deficient diet. On the 3rd week, Mg(2+)-deficient mice displayed increased anxiety- and depression-like behavior. In the Mg(2+)-deficient mice, a low does (10mg/kg) of MPTP treatment decreased dopamine (DA) and its metabolites contents in the striatum, but not in control mice. The same dose of MPTP did not influence these neurochemical markers in the mice fed Mg(2+)-deficient diet for 1 week which did not exhibit the altered emotional behavior. These results indicate that Mg(2+)-deficient mice with altered emotional behavior appear to increase the susceptibility to MPTP neurotoxicity in C57BL/6N mice.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Deficiencia de Magnesio/metabolismo , Magnesio/metabolismo , Trastornos Parkinsonianos/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Animales , Causalidad , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/fisiopatología , Modelos Animales de Enfermedad , Dopaminérgicos/farmacología , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Emociones/efectos de los fármacos , Emociones/fisiología , Deficiencia de Magnesio/complicaciones , Deficiencia de Magnesio/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Trastornos Parkinsonianos/etiología , Trastornos Parkinsonianos/fisiopatología , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Sustancia Negra/fisiopatología
5.
Diabetes ; 53(4): 998-1006, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15047615

RESUMEN

In islets of Langerhans, L-glutamate is stored in glucagon-containing secretory granules of alpha-cells and cosecreted with glucagon under low-glucose conditions. The L-glutamate triggers secretion of gamma-aminobutyric acid (GABA) from beta-cells, which in turn inhibits glucagon secretion from alpha-cells through the GABAA receptor. In the present study, we tested the working hypothesis that L-glutamate functions as an autocrine/paracrine modulator and inhibits glucagon secretion through a glutamate receptor(s) on alpha-cells. The addition of L-glutamate at 1 mmol/l; (R,S)-phosphonophenylglycine (PPG) and (S)-3,4-dicarboxyphenylglycine (DCPG), specific agonists for class III metabotropic glutamate receptor (mGluR), at 100 micromol/l; and (1S,3R,4S)-1-aminocyclopentane-1,3,4-tricarboxylic acid (ACPT-I) at 50 micromol/l inhibited the low-glucose-evoked glucagon secretion by 87, 81, 73, and 87%, respectively. This inhibition was dose dependent and was blocked by (R,S)-cyclopropyl-4-phosphonophenylglycine (CPPG), a specific antagonist of class III mGluR. Agonists of other glutamate receptors, including kainate and quisqualate, had little effectiveness. RT-PCR and immunological analyses indicated that mGluR4, a class III mGluR, was expressed and localized with alpha- and F cells, whereas no evidence for expression of other mGluRs, including mGluR8, was obtained. L-Glutamate, PPG, and ACPT-I decreased the cAMP content in isolated islets, which was blocked by CPPG. Dibutylyl-cAMP, a nonhydrolyzable cAMP analog, caused the recovery of secretion of glucagon. Pertussis toxin, which uncouples adenylate cyclase and inhibitory G-protein, caused the recovery of both the cAMP content and secretion of glucagon. These results indicate that alpha- and F cells express functional mGluR4, and its stimulation inhibits secretion of glucagon through an inhibitory cAMP cascade. Thus, L-glutamate may directly interact with alpha-cells and inhibit glucagon secretion.


Asunto(s)
Ciclopentanos/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Glucagón/metabolismo , Islotes Pancreáticos/metabolismo , Receptores de Glutamato Metabotrópico/fisiología , Ácidos Tricarboxílicos/farmacología , Animales , Perfilación de la Expresión Génica , Glucosa/farmacología , Ácido Glutámico/farmacología , Islotes Pancreáticos/efectos de los fármacos , Masculino , Toxina del Pertussis/farmacología , Ratas , Ratas Wistar , Receptores de Glutamato Metabotrópico/genética
6.
Diabetes ; 52(8): 2066-74, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12882924

RESUMEN

Islets of Langerhans contain gamma-aminobutyrate (GABA) and may use it as an intercellular transmitter. In beta-cells, GABA is stored in synaptic-like microvesicles and secreted through Ca(2+)-dependent exocytosis. Vesicular inhibitory amino acid transporter (VIAAT), which is responsible for the storage of GABA and glycine in neuronal synaptic vesicles, is believed to be responsible for the storage and secretion of GABA in beta-cells. However, a recent study by Chessler et al. indicated that VIAAT is expressed in the mantle region of islets. In the present study, we investigated the precise localization of VIAAT in rat islets of Langerhans and clonal islet cells and found that it is present in alpha-cells, a minor population of F-cells and alphaTC6 cells, and clonal alpha-cells but not in beta-cells, delta-cells, or MIN6 m9-cells (clonal beta-cells). Combined biochemical, immunohistochemical, and electronmicroscopical evidence indicated that VIAAT is specifically localized with glucagon-containing secretory granules in alpha-cells. ATP-dependent uptake of radiolabeled GABA, which is energetically coupled with a vacuolar proton pump, was detected in digitonin-permeabilized alphaTC6 cells as well as in MIN6 m9 cells. These results demonstrate that functional neuronal VIAAT is present in glucagon-containing secretory granules in alpha-cells and suggest that the ATP-dependent GABA transporter in beta-cells is at least immunologically distinct from VIAAT. Because glucagon-containing secretory granules also contain vesicular glutamate transporter and store L-glutamate, as demonstrated by Hayashi et al., the present results suggest more complex features of the GABAergic phenotype of islets than previously supposed.


Asunto(s)
Sistemas de Transporte de Aminoácidos , Proteínas Portadoras/análisis , Glucagón/análisis , Islotes Pancreáticos/química , Proteínas de Transporte de Membrana , Vesículas Secretoras/química , Proteínas de Transporte Vesicular , Adenosina Trifosfato/metabolismo , Animales , Células COS , Proteínas Portadoras/metabolismo , Células Clonales , Técnica del Anticuerpo Fluorescente , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Células PC12 , Ratas , Ratas Wistar , Vesículas Secretoras/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores , Ácido gamma-Aminobutírico/farmacocinética
7.
Diabetes ; 53(7): 1743-53, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15220198

RESUMEN

Many metabolic factors affect the secretion of insulin from beta-cells and glucagon from alpha-cells of the islets of Langerhans to regulate blood glucose. Somatostatin from delta-cells, considered a local inhibitor of islet function, reduces insulin and glucagon secretion by activating somatostatin receptors in islet cells. Somatostatin secretion from delta-cells is increased by high glucose via glucose metabolism in a similar way to insulin secretion from beta-cells. However, it is unknown how low glucose triggers somatostatin secretion. Because L-glutamate is cosecreted with glucagon from alpha-cells under low-glucose conditions and acts as a primary intercellular messenger, we hypothesized that glutamate signaling triggers the secretion of somatostatin. In this study, we showed that delta-cells express GluR4c-flip, a newly identified splicing variant of GluR4, an (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type ionotropic glutamate receptor of rat. After treatment with L-glutamate, AMPA, or kainate, secretion of somatostatin from isolated islets was significantly stimulated under low-glucose conditions. The glutamate-dependent somatostatin secretion was Ca(2+) dependent and blocked by 6-cyano-7-nitroquinoxaline-2,3-dione. Somatostatin in turn inhibited the secretion of L-glutamate and glucagon from alpha-cells. These results indicate that L-glutamate triggers somatostatin secretion from delta-cells by way of the GluR4c-flip receptor under low-glucose conditions. The released somatostatin may complete the feedback inhibition of alpha-cells. Thus, alpha- and delta-cells may communicate with each other through L-glutamate and somatostatin signaling.


Asunto(s)
Hormonas/metabolismo , Islotes Pancreáticos/metabolismo , Receptores AMPA/fisiología , Somatostatina/metabolismo , Animales , Técnicas de Cultivo , Antagonistas de Aminoácidos Excitadores/farmacología , Glucagón/antagonistas & inhibidores , Ácido Glutámico/efectos de los fármacos , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Hormonas/farmacología , Islotes Pancreáticos/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Receptores AMPA/genética , Receptores AMPA/metabolismo , Receptores de Glutamato/metabolismo , Somatostatina/farmacología
8.
Yakugaku Zasshi ; 133(8): 849-56, 2013.
Artículo en Japonés | MEDLINE | ID: mdl-23903224

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the core symptoms such as bradykinesia, resting tremor, rigidity and postural instability. Currently, pharmacotherapy and surgical approaches for the treatments of PD can only improve the neurological symptoms. Therefore, to search neuroprotective therapies using pharmacological and nonpharmacological approaches could be important to delay the progression of pathogenesis in PD. Coenzyme Q10 (CoQ10) is a component of the electron transport chain as well as an important antioxidant in mitochondrial and lipid membranes. The central role of CoQ10 in two areas implicated in the pathogenesis of PD, mitochondrial dysfunction and oxidative damages, suggest that it may be useful for treatment to slow the progression of PD. The neuroprotective effect of CoQ10 has been reported in several in vivo and in vitro models of neurodegenerative disorders. Although CoQ10 attenuated the toxin-induced reduction of dopamine content and tyrosine hydroxylase-immunoreactive neurons in the striatum of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model, it is still unknown how this nutrition affects the mitochondrial function. We demonstrated that oral administration of CoQ10 significantly attenuated the loss of dopaminergic nerve terminals induced by MPTP treatment. Furthermore, our experimental data indicate that an inhibition of mitochondrial cytochrome c release is one of the primary targets for CoQ10 and may lead to a potent neuroprotection.


Asunto(s)
Trastornos Parkinsonianos/tratamiento farmacológico , Ubiquinona/análogos & derivados , Animales , Progresión de la Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Ubiquinona/uso terapéutico
9.
J Neuroimmunol ; 257(1-2): 102-6, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23313381

RESUMEN

Autoantibody against nicotinic acetylcholine receptor (nAChR) α3 subunit has been implicated in the pathogenesis of paraneoplastic neurological syndrome. To examine the effect of anti-α3 subunit autoantibody on cell-surface nAChRs, we established human embryonic kidney 293 cells stably co-expressing α3 and ß4 subunits. Upon incubation with seropositive patient's serum, this cell line showed co-accumulation of patient's IgG and α3 subunits in the cytoplasm. These data support the hypothesis that anti-α3 subunit autoantibody induces internalization of cell-surface nAChRs and thereby impairs synaptic transmission.


Asunto(s)
Autoanticuerpos/fisiología , Endocitosis/inmunología , Receptores Nicotínicos/metabolismo , Animales , Células COS , Chlorocebus aethiops , Regulación de la Expresión Génica/inmunología , Células HEK293 , Humanos , Ratas
10.
Parkinsons Dis ; 2012: 985157, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22655218

RESUMEN

The aim of this study is to investigate the role of magnolol in preventing 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP-) induced neurodegeneration in mice and 1-methyl-4-phenylpyridinium ion-(MPP(+)-) induced cytotoxicity to human neuroblastoma SH-SY5Y cells and to examine the possible mechanisms. Magnolol (30 mg/kg) was orally administered to C57BL/6N mice once a day for 4 or 5 days either before or after MPTP treatment. Western blot analysis revealed that MPTP injections substantially decreased protein levels of dopamine transporter (DAT) and tyrosine hydroxylase (TH) and increased glial fibrillary acidic protein (GFAP) levels in the striatum. Both treatments with magnolol significantly attenuated MPTP-induced decrease in DAT and TH protein levels in the striatum. However, these treatments did not affect MPTP-induced increase in GFAP levels. Moreover, oral administration of magnolol almost completely prevented MPTP-induced lipid peroxidation in the striatum. In human neuroblastoma SH-SY5Y cells, magnolol significantly attenuated MPP(+)-induced cytotoxicity and the production of reactive oxygen species. These results suggest that magnolol has protective effects via an antioxidative mechanism in both in vivo and in vitro models of Parkinson's disease.

11.
Neurosci Res ; 69(4): 352-5, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21185886

RESUMEN

The molecular mechanisms underlying MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced dopaminergic (DAergic) neuronal death in vivo are still not fully understood. To investigate the selective DAergic neurotoxicity, we have developed an immunological technique to isolate DAergic synaptosomes from mouse striatal tissues using an antibody against 20 amino acid residues in the extracellular second loop of dopamine transporter (DAT). The DAT protein level in the isolated DAergic synaptosomes was markedly decreased at 16 h after a single injection of 30 mg/kg MPTP, but not in striatal homogenate and crude synaptosomes fraction. GBR-12909, a dopamine uptake inhibitor, completely reversed the MPTP-induced decrease of DAT protein in the DAergic synaptosomes. These results suggest that the isolated DAergic synaptosomes can be useful to identify mechanisms of loss of the nerve terminals.


Asunto(s)
Cuerpo Estriado/patología , Dopamina/metabolismo , Intoxicación por MPTP/patología , Terminales Presinápticos/patología , Sinaptosomas/patología , Animales , Western Blotting , Cuerpo Estriado/metabolismo , Intoxicación por MPTP/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Terminales Presinápticos/metabolismo , Sinaptosomas/metabolismo
12.
Neurosci Lett ; 463(1): 22-5, 2009 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-19638300

RESUMEN

Coenzyme Q(10) (CoQ(10)) exerts neuroprotective effects in several in vivo and in vitro models of neurodegenerative disorders. However, the mechanisms of action are not fully understood. The aim in this study was to investigate whether oral administration of CoQ(10) could inhibit cytochrome c (cyt c) release from mitochondria induced by 1-methyl-4-phenylpyridinium ion (MPP(+)), which causes dopaminergic cell death by selective inhibition of complex I of the electron transport chain, in mouse brain synaptosomes. An increase of cyt c was detected in the cytosolic fraction from mouse brain synaptosomes treated with MPP(+). Oral administration of CoQ(10) prevented the mitochondrial cyt c release in the MPP(+)-treated synaptosomes. In addition, CoQ(10) did not affect the MPP(+)-induced decrease in mitochondrial oxidation-reduction activity and membrane potential in brain synaptosomes. Our findings demonstrate that MPP(+)-induced mitochondrial cyt c release in brain synaptosomes is prevented by oral administration of CoQ(10) independently of mitochondrial dysfunction prior to the cyt c release.


Asunto(s)
1-Metil-4-fenilpiridinio/farmacología , Encéfalo/efectos de los fármacos , Citocromos c/metabolismo , Mitocondrias/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Sinaptosomas/efectos de los fármacos , Ubiquinona/análogos & derivados , Administración Oral , Animales , Encéfalo/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Oxidación-Reducción , Sinaptosomas/metabolismo , Ubiquinona/administración & dosificación , Ubiquinona/farmacología
13.
J Biol Chem ; 278(3): 1966-74, 2003 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-12414805

RESUMEN

L-Glutamate is believed to function as an intercellular transmitter in the islets of Langerhans. However, critical issues, i.e. where, when and how L-glutamate appears, and what happens upon stimulation of glutamate receptors in the islets, remain unresolved. Vesicular glutamate transporter 2 (VGLUT2), an isoform of the vesicular glutamate transporter essential for neuronal storage of L-glutamate, is expressed in alpha cells (Hayashi, M., Otsuka, M., Morimoto, R., Hirota, S., Yatsushiro, S., Takeda, J., Yamamoto, A., and Moriyama, Y. (2001) J. Biol. Chem. 276, 43400-43406). Here we show that VGLUT2 is specifically localized in glucagon-containing secretory granules but not in synaptic-like microvesicles in alpha TC6 cells, clonal alpha cells, and islet alpha cells. VGLUT1, another VGLUT isoform, is also expressed and localized in secretory granules in alpha cells. Low glucose conditions triggered co-secretion of stoichiometric amounts of L-glutamate and glucagon from alpha TC6 cells and isolated islets, which is dependent on temperature and Ca(2+) and inhibited by phentolamine. Similar co-secretion of L-glutamate and glucagon from islets was observed upon stimulation of beta-adrenergic receptors with isoproterenol. Under low glucose conditions, stimulation of glutamate receptors facilitates secretion of gamma-aminobutyric acid from MIN6 m9, clonal beta cells, and isolated islets. These results indicate that co-secretion of L-glutamate and glucagon from alpha cells under low glucose conditions triggers GABA secretion from beta cells and defines the mode of action of L-glutamate as a regulatory molecule for the endocrine function. To our knowledge, this is the first example of secretory granule-mediated glutamatergic signal transmission.


Asunto(s)
Glucagón/metabolismo , Ácido Glutámico/metabolismo , Islotes Pancreáticos/metabolismo , Transducción de Señal , Animales , Secuencia de Bases , Cartilla de ADN , Masculino , Ratas , Ratas Wistar
14.
J Neurochem ; 81(3): 533-40, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12065661

RESUMEN

5-hydroxytryptamine (5-HT) is a precursor and a putative modulator for melatonin synthesis in mammalian pinealocytes. 5-HT is present in organelles distinct from l-glutamate-containing synaptic-like microvesicles as well as in the cytoplasm of pinealocytes, and is secreted upon stimulation by norepinephrine (NE) to enhance serotonin N-acetyltransferase activity via the 5-HT2 receptor. However, the mechanism underlying the secretion of 5-HT from pinealocytes is unknown. In this study, we show that NE-evoked release of 5-HT is largely dependent on Ca2+ in rat pinealocytes in culture. Omission of Ca2+ from the medium and incubation of pineal cells with EGTA-tetraacetoxymethyl-ester inhibited by 59 and 97% the NE-evoked 5-HT release, respectively. Phenylephrine also triggered the Ca2+-dependent release of 5-HT, which was blocked by phentolamine, an alpha antagonist, but not by propranolol, a beta antagonist. Botulinum neurotoxin type E cleaved 25 kDa synaptosomal-associated protein and inhibited by 50% of the NE-evoked 5-HT release. Bafilomycin A1, an inhibitor of vacuolar H+-ATPase, and reserpine and tetrabenazine, inhibitors of vesicular monoamine transporter, all decreased the storage of vesicular 5-HT followed by inhibition of the NE-evoked 5-HT release. Agents that trigger L-glutamte exocytosis such as acetylcholine did not trigger any Ca2+-dependent 5-HT release. Vice versa neither NE nor phenylephrine caused synaptic-like microvesicle-mediated l-glutamate exocytosis. These results indicated that upon stimulation of a adrenoceptors pinealocytes secrete 5-HT through a Ca2+-dependent exocytotic mechanism, which is distinct from the exocytosis of synaptic-like microvesicles.


Asunto(s)
Calcio/metabolismo , Proteínas de Transporte de Membrana , Neuropéptidos , Norepinefrina/farmacología , Glándula Pineal/efectos de los fármacos , Glándula Pineal/metabolismo , Serotonina/biosíntesis , Agonistas alfa-Adrenérgicos/farmacología , Antagonistas Adrenérgicos alfa/farmacología , Animales , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Exocitosis/efectos de los fármacos , Ácido Glutámico/metabolismo , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/metabolismo , Glándula Pineal/citología , Ratas , Ratas Wistar , Receptores Adrenérgicos alfa/metabolismo , Reserpina/farmacología , Vesículas Secretoras/metabolismo , Serotonina/metabolismo , Antagonistas de la Serotonina/farmacología , Tetrabenazina/farmacología , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , Proteínas de Transporte Vesicular de Aminas Biógenas , Proteínas de Transporte Vesicular de Monoaminas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA