Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Biomacromolecules ; 24(11): 4680-4694, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37747816

RESUMEN

3D printing of pharmaceuticals offers a unique opportunity for long-term, sustained drug release profiles for an array of treatment options. Unfortunately, this approach is often limited by physical compounding or processing limitations. Modification of the active drug into a prodrug compound allows for seamless incorporation with advanced manufacturing methods that open the door to production of complex tissue scaffold drug depots. Here we demonstrate this concept using salicylic acids with varied prodrug structures for control of physical and chemical properties. The role of different salicylic acid derivatives (salicylic acid, bromosalicylic allyl ester, iodosalicylic allyl ester) and linker species (allyl salicylate, allyl 2-(allyloxy)benzoate, allyl 2-(((allyloxy)carbonyl)oxy)benzoate) were investigated using thiol-ene cross-linking in digital light processing (DLP) 3D printing to produce porous prodrug tissue scaffolds containing more than 50% salicylic acid by mass. Salicylic acid photopolymer resins were all found to be highly reactive (solidification within 5 s of irradiation at λ = 405 nm), while the cross-linked solids display tunable thermomechanical behaviors with low glass transition temperatures (Tgs) and elastomeric behaviors, with the carbonate species displaying an elastic modulus matching that of adipose tissue (approximately 65 kPa). Drug release profiles were found to be zero order, sustained release based upon hydrolytic degradation of multilayered scaffolds incorporating fluorescent modeling compounds, with release rates tuned through selection of the linker species. Cytocompatibility in 2D and 3D was further demonstrated for all species compared to polycarbonate controls, as well as salicylic acid-containing composites (physical incorporation), over a 2-week period using murine fibroblasts. The use of drugs as the matrix material for solid prodrug tissue scaffolds opens the door to novel therapeutic strategies, longer sustained release profiles, and even reduced complications for advanced medicine.


Asunto(s)
Profármacos , Andamios del Tejido , Ratones , Animales , Andamios del Tejido/química , Ácido Salicílico/química , Preparaciones de Acción Retardada/química , Liberación de Fármacos , Ésteres , Impresión Tridimensional
2.
Infect Immun ; 88(3)2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31792074

RESUMEN

RNA thermometers are cis-acting riboregulators that mediate the posttranscriptional regulation of gene expression in response to environmental temperature. Such regulation is conferred by temperature-responsive structural changes within the RNA thermometer that directly result in differential ribosomal binding to the regulated transcript. The significance of RNA thermometers in controlling bacterial physiology and pathogenesis is becoming increasingly clear. This study combines in silico, molecular genetics, and biochemical analyses to characterize both the structure and function of a newly identified RNA thermometer within the ompA transcript of Shigella dysenteriae First identified by in silico structural predictions, genetic analyses have demonstrated that the ompA RNA thermometer is a functional riboregulator sufficient to confer posttranscriptional temperature-dependent regulation, with optimal expression observed at the host-associated temperature of 37°C. Structural studies and ribosomal binding analyses have revealed both increased exposure of the ribosomal binding site and increased ribosomal binding to the ompA transcript at permissive temperatures. The introduction of site-specific mutations predicted to alter the temperature responsiveness of the ompA RNA thermometer has predictable consequences for both the structure and function of the regulatory element. Finally, in vitro tissue culture-based analyses implicate the ompA RNA thermometer as a bona fide S. dysenteriae virulence factor in this bacterial pathogen. Given that ompA is highly conserved among Gram-negative pathogens, these studies not only provide insight into the significance of riboregulation in controlling Shigella virulence, but they also have the potential to facilitate further understanding of the physiology and/or pathogenesis of a wide range of bacterial species.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Regulación Bacteriana de la Expresión Génica , Shigella dysenteriae , Temperatura , Factores de Virulencia , Virulencia/genética , ARN Bacteriano/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/fisiología , Shigella dysenteriae/patogenicidad , Shigella dysenteriae/fisiología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
3.
Endocrinology ; 163(7)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35617141

RESUMEN

The gut microbiome has an important role in host development, metabolism, growth, and aging. Recent research points toward potential crosstalk between the gut microbiota and the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis. Our laboratory previously showed that GH excess and deficiency are associated with an altered gut microbial composition in adult mice. Yet, no study to date has examined the influence of GH on the gut microbiome over time. Our study thus tracked the effect of excess GH action on the longitudinal changes in the gut microbial profile (ie, abundance, diversity/maturity, predictive metabolic function, and short-chain fatty acid [SCFA] levels) of bovine GH (bGH) transgenic mice at age 3, 6, and 12 months compared to littermate controls in the context of metabolism, intestinal phenotype, and premature aging. The bGH mice displayed age-dependent changes in microbial abundance, richness, and evenness. Microbial maturity was significantly explained by genotype and age. Moreover, several bacteria (ie, Lactobacillus, Lachnospiraceae, Bifidobacterium, and Faecalibaculum), predictive metabolic pathways (such as SCFA, vitamin B12, folate, menaquinol, peptidoglycan, and heme B biosynthesis), and SCFA levels (acetate, butyrate, lactate, and propionate) were consistently altered across all 3 time points, differentiating the longitudinal bGH microbiome from controls. Of note, the bGH mice also had significantly impaired intestinal fat absorption with increased fecal output. Collectively, these findings suggest that excess GH alters the gut microbiome in an age-dependent manner with distinct longitudinal microbial and predicted metabolic pathway signatures.


Asunto(s)
Microbioma Gastrointestinal , Hormona de Crecimiento Humana , Animales , Bovinos , Ácidos Grasos Volátiles , Microbioma Gastrointestinal/genética , Hormona del Crecimiento/metabolismo , Masculino , Ratones , Ratones Transgénicos
4.
Infect Immun ; 79(11): 4543-9, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21859852

RESUMEN

Actin-based motility is central to the pathogenicity of the intracellular bacterial pathogen Shigella. Two Shigella outer membrane proteins, IcsA and IcsP, are required for efficient actin-based motility in the host cell cytoplasm, and the genes encoding both proteins are carried on the large virulence plasmid. IcsA triggers actin polymerization on the surface of the bacterium, leading to the formation of an actin tail that allows both intra- and intercellular spread. IcsP, an outer membrane protease, modulates the amount and distribution of the IcsA protein on the bacterial surface through proteolytic cleavage of IcsA. Transcription of icsP is increased in the presence of VirB, a DNA-binding protein that positively regulates many genes carried on the large virulence plasmid. In Shigella dysenteriae, the small regulatory RNA RyhB, which is a member of the iron-responsive Fur regulon, suppresses several virulence-associated phenotypes by downregulating levels of virB in response to iron limitation. Here we show that the Fur/RyhB regulatory pathway downregulates IcsP levels in response to low iron concentrations in Shigella flexneri and that this occurs at the level of transcription through the RyhB-dependent regulation of VirB. These observations demonstrate that in Shigella species the Fur/RyhB regulatory pathway provides a mechanism to finely tune the expression of icsP in response to the low concentrations of free iron predicted to be encountered within colonic epithelial cells.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Hierro/farmacología , Proteínas Represoras/metabolismo , Shigella flexneri/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Hierro/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Shigella flexneri/efectos de los fármacos , Transcripción Genética
5.
Front Cell Infect Microbiol ; 11: 661026, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34084755

RESUMEN

The dynamic host environment presents a significant hurdle that pathogenic bacteria must overcome to survive and cause diseases. Consequently, these organisms have evolved molecular mechanisms to facilitate adaptation to environmental changes within the infected host. Small RNAs (sRNAs) have been implicated as critical regulators of numerous pathways and systems in pathogenic bacteria, including that of bacterial Toxin-Antitoxin (TA) systems. TA systems are typically composed of two factors, a stable toxin, and a labile antitoxin which functions to protect against the potentially deleterious activity of the associated toxin. Of the six classes of bacterial TA systems characterized to date, the toxin component is always a protein. Type I and Type III TA systems are unique in that the antitoxin in these systems is an RNA molecule, whereas the antitoxin in all other TA systems is a protein. Though hotly debated, the involvement of TA systems in bacterial physiology is recognized by several studies, with the Type II TA system being the most extensively studied to date. This review focuses on RNA-regulated TA systems, highlighting the role of Type I and Type III TA systems in several pathogenic bacteria.


Asunto(s)
Antitoxinas , Toxinas Bacterianas , Sistemas Toxina-Antitoxina , Bacterias/genética , Proteínas Bacterianas , ARN
6.
PLoS One ; 16(6): e0252744, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34061913

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0063781.].

7.
J Invest Dermatol ; 141(11): 2730-2740.e9, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33965402

RESUMEN

Adalimumab (ADA) is the only Food and Drug Administration‒approved treatment for moderate-to-severe hidradenitis suppurativa, whereas etanercept and certolizumab-pegol have been shown to be ineffective, suggesting that the mechanism of action of ADA is distinct in hidradenitis suppurativa and may contribute to improved wound healing. Given that macrophages (Mϕs) play pivotal roles throughout the wound healing process, an in vitro Mϕ differentiation assay was carried out to assess the impact of TNF‒anti-TNF complexes on these cells. TNF‒ADA complexes exhibited stronger inhibitory effects on inflammatory Mϕ differentiation. Moreover, RNA sequencing revealed several unique wound healing profiles for TNF‒ADA‒treated inflammatory Mϕs, which were not observed for those treated with either TNF‒etanercept or TNF‒certolizumab-pegol complexes, including the inhibition of the matrix metalloproteinase (MMP) pathway. In addition, ADA administration was found to significantly reduce the levels of inflammatory MMP-1 and MMP-9 while promoting wound-healing MMP-13 and tissue inhibitor of metalloproteinases 2 levels in the circulation of the patients with hidradenitis suppurativa who responded to treatment. Our in vitro findings show that TNF‒ADA‒treated inflammatory Mϕs exhibit a distinct profile resembling wound healing. Moreover, ADA not only differentially regulates MMP expression in patients with hidradenitis suppurativa responding to the therapy but also potentially induces a transition to a profile suggestive of wound healing.


Asunto(s)
Adalimumab/farmacología , Hidradenitis Supurativa/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Metaloproteinasas de la Matriz/fisiología , Inhibidores del Factor de Necrosis Tumoral/farmacología , Cicatrización de Heridas/efectos de los fármacos , Adalimumab/uso terapéutico , Diferenciación Celular/efectos de los fármacos , Certolizumab Pegol/farmacología , Etanercept/farmacología , Hidradenitis Supurativa/fisiopatología , Humanos , Macrófagos/citología , Inhibidores de la Metaloproteinasa de la Matriz/farmacología
8.
mSphere ; 6(5): e0067621, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34612674

RESUMEN

Staphylococcus aureus is a pathogenic bacterium but also a commensal of skin and anterior nares in humans. As S. aureus transits from skins/nares to inside the human body, it experiences changes in temperature. The production and content of S. aureus extracellular vesicles (EVs) have been increasingly studied over the past few years, and EVs are increasingly being recognized as important to the infectious process. Nonetheless, the impact of temperature variation on S. aureus EVs has not been studied in detail, as most reports that investigate EV cargoes and host cell interactions are performed using vesicles produced at 37°C. Here, we report that EVs in S. aureus differ in size and protein/RNA cargo depending on the growth temperature used. We demonstrate that the temperature-dependent regulation of vesicle production in S. aureus is mediated by the alpha phenol-soluble modulin peptides (αPSMs). Through proteomic analysis, we observed increased packaging of virulence factors at 40°C, whereas the EV proteome has greater diversity at 34°C. Similar to the protein content, we perform transcriptomic analysis and demonstrate that the RNA cargo also is impacted by temperature. Finally, we demonstrate greater αPSM- and alpha-toxin-mediated erythrocyte lysis with 40°C EVs, but 34°C EVs are more cytotoxic toward THP-1 cells. Together, our study demonstrates that small temperature variations have great impact on EV biogenesis and shape the interaction with host cells. IMPORTANCE Extracellular vesicles (EVs) are lipid bilayer spheres that contain proteins, nucleic acids, and lipids secreted by bacteria. They are involved in Staphylococcus aureus infections, as they package virulence factors and deliver their contents inside host cells. The impact of temperature variations experienced by S. aureus during the infectious process on EVs is unknown. Here, we demonstrate the importance of temperature in vesicle production and packaging. High temperatures promote packaging of virulence factors and increase the protein and lipid concentration but reduce the overall RNA abundance and protein diversity in EVs. The importance of temperature changes is highlighted by the fact that EVs produced at low temperature are more toxic toward macrophages, whereas EVs produced at high temperature display more hemolysis toward erythrocytes. Our research brings new insights into temperature-dependent vesiculation and interaction with the host during S. aureus transition from colonization to virulence.


Asunto(s)
Vesículas Extracelulares/química , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/metabolismo , Temperatura , Factores de Virulencia/metabolismo , Toxinas Bacterianas/metabolismo , Vesículas Extracelulares/metabolismo , Interacciones Huésped-Patógeno , Humanos , Macrófagos/microbiología , Proteoma/análisis , Proteómica/métodos , Células THP-1 , Virulencia
9.
mSphere ; 6(2)2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731473

RESUMEN

Staphylococcus aureus is an opportunistic pathogen that colonizes the anterior nares of 30 to 50% of the population. Colonization is most often asymptomatic; however, self-inoculation can give rise to potentially fatal infections of the deeper tissues and blood. Like all bacteria, S. aureus can sense and respond to environmental cues and modify gene expression to adapt to specific environmental conditions. The transition of S. aureus from the nares to the deeper tissues and blood is accompanied by changes in environmental conditions, such as nutrient availability, pH, and temperature. In this study, we perform transcriptomics and proteomics on S. aureus cultures growing at three physiologically relevant temperatures, 34°C (nares), 37°C (body), and 40°C (pyrexia), to determine if small scale, biologically meaningful alterations in temperature impact S. aureus gene expression. Results show that small but definite temperature changes elicit a large-scale restructuring of the S. aureus transcriptome and proteome in a manner that, most often, inversely correlates with increasing temperature. We also provide evidence that a large majority of these changes are modulated at the posttranscriptional level, possibly by sRNA regulatory elements. Phenotypic analyses were also performed to demonstrate that these changes have physiological relevance. Finally, we investigate the impact of temperature-dependent alterations in gene expression on S. aureus pathogenesis and demonstrate decreased intracellular invasion of S. aureus grown at 34°C. Collectively, our results demonstrate that small but biologically meaningful alterations in temperature influence S. aureus gene expression, a process that is likely a major contributor to the transition from a commensal to pathogen.IMPORTANCE Enteric bacterial pathogens, like Escherichia coli, are known to experience large temperature differences as they are transmitted through the fecal oral route. This change in temperature has been demonstrated to influence bacterial gene expression and facilitate infection. Staphylococcus aureus is a human-associated pathogen that can live as a commensal on the skin and nares or cause invasive infections of the deeper tissues and blood. Factors influencing S. aureus nasal colonization are not fully understood; however, individuals colonized with S. aureus are at increased risk of invasive infections through self-inoculation. The transition of S. aureus from the nose (colonization) to the body (infection) is accompanied by a modest but definite temperature increase, from 34°C to 37°C. In this study, we investigate whether these host-associated small temperature changes can influence S. aureus gene expression. Results show widespread changes in the bacterial transcriptome and proteome at three physiologically relevant temperatures (34°C, 37°C, and 40°C).


Asunto(s)
Proteínas Bacterianas/análisis , Regulación Bacteriana de la Expresión Génica , Proteoma , Staphylococcus aureus/genética , Temperatura , Transcriptoma , Células Cultivadas , Células Epiteliales/microbiología , Humanos , Nariz/citología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/química , Staphylococcus aureus/metabolismo , Factores de Virulencia/genética
10.
Growth Horm IGF Res ; 53-54: 101333, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32717585

RESUMEN

Both the GH/IGF-1 axis and the gut microbiota independently play an important role in host growth, metabolism, and intestinal homeostasis. Inversely, abnormalities in GH action and microbial dysbiosis (or a lack of diversity) in the gut have been implicated in restricted growth, metabolic disorders (such as chronic undernutrition, anorexia nervosa, obesity, and diabetes), and intestinal dysfunction (such as pediatric Crohn's disease, colonic polyps, and colon cancer). Over the last decade, studies have demonstrated that the microbial impact on growth may be mediated through the GH/IGF-1 axis, pointing toward a potential relationship between GH and the gut microbiota. This review covers current research on the GH/IGF-1 axis and the gut microbiome and its influence on overall host growth, metabolism, and intestinal health, proposing a bidirectional relationship between GH and the gut microbiome.


Asunto(s)
Microbioma Gastrointestinal , Hormona de Crecimiento Humana/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Animales , Humanos
11.
Endocrinology ; 161(4)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32100023

RESUMEN

The gut microbiome has been implicated in host metabolism, endocrinology, and pathophysiology. Furthermore, several studies have shown that gut bacteria impact host growth, partially mediated through the growth hormone (GH)/insulin-like growth factor 1 (IGF-1) axis. Yet, no study to date has examined the specific role of GH on the gut microbiome. Our study thus characterized the adult gut microbial profile and intestinal phenotype in GH gene-disrupted (GH-/-) mice (a model of GH deficiency) and bovine GH transgenic (bGH) mice (a model of chronic, excess GH action) at 6 months of age. Both the GH-/- and bGH mice had altered microbial signatures, in opposing directions at the phylum and genus levels. For example, GH-/- mice had significantly reduced abundance in the Proteobacteria, Campylobacterota, and Actinobacteria phyla, whereas bGH mice exhibited a trending increase in those phyla compared with respective controls. Analysis of maturity of the microbial community demonstrated that lack of GH results in a significantly more immature microbiome while excess GH increases microbial maturity. Several common bacterial genera were shared, although in opposing directions, between the 2 mouse lines (e.g., decreased in GH-/- mice and increased in bGH mice), suggesting an association with GH. Similarly, metabolic pathways like acetate, butyrate, heme B, and folate biosynthesis were predicted to be impacted by GH. This study is the first to characterize the gut microbiome in mouse lines with altered GH action and indicates that GH may play a role in the growth of certain microbiota thus impacting microbial maturation and metabolic function.


Asunto(s)
Enanismo Hipofisario/microbiología , Microbioma Gastrointestinal/fisiología , Hormona del Crecimiento/metabolismo , Animales , Enanismo Hipofisario/genética , Enanismo Hipofisario/metabolismo , Hormona del Crecimiento/genética , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos
12.
Biotechniques ; 67(2): 55-62, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31290335

RESUMEN

Illumina-based amplicon sequencing suffers from the deleterious effects of highly homogenous nucleotide composition, limiting the number of high-quality reads generated per run. We attempted to alleviate this limitation by comparing the results obtained from 16S ribosomal DNA (16S rDNA) sequencing of mouse gut microbiomes using Illumina V3-V4 primers (Run 1) and custom primers that incorporate a heterogeneity spacer (0-7 nucleotides) upstream of the 16S priming region (Run 2). Overall, Run 2 had higher quality sequences, a more diverse microbial profile, and higher precision within, and variation between, experimental groups than Run 1. Our primer design offers a simple way to increase the quality of 16S rDNA sequencing and increases the number of useable reads generated per Illumina run.


Asunto(s)
Heces/microbiología , Microbioma Gastrointestinal , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN/métodos , Animales , Cartilla de ADN/genética , Femenino , Biblioteca de Genes , Ratones , Ratones Endogámicos C57BL
13.
PLoS One ; 14(4): e0214521, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30933991

RESUMEN

Staphylococcus aureus is a Gram-positive bacterial pathogen of global concern and a leading cause of bacterial infections worldwide. Asymptomatic carriage of S. aureus on the skin and in the anterior nares is common and recognized as a predisposing factor to invasive infection. Transition of S. aureus from the carriage state to that of invasive infection is often accompanied by a temperature upshift from approximately 33°C to 37°C. Such a temperature shift is known in other pathogens to influence gene expression, often resulting in increased production of factors that promote survival or virulence within the host. One mechanism by which bacteria modulate gene expression in response to temperature is by the regulatory activity of RNA-based thermosensors, cis-acting riboregulators that control translation efficiency. This study was designed to identify and characterize RNA-based thermosensors in S. aureus. Initially predicted by in silico analyses of the S. aureus USA300 genome, reporter-based gene expression analyses and site-specific mutagenesis were performed to demonstrate the presence of a functional thermosensor within the 5' UTR of cidA, a gene implicated in biofilm formation and survival of the pathogen. The nucleic sequence composing the identified thermosensor are sufficient to confer temperature-dependent post-transcriptional regulation, and activity is predictably altered by the introduction of site-specific mutations designed to stabilize or destabilize the structure within the identified thermosensor. The identified regulator is functional in both the native bacterial host S. aureus and in the distally related species Escherichia coli, suggesting that its regulatory activity is independent of host-specific factors. Interestingly, unlike the majority of bacterial RNA-based thermosensors characterized to date, the cidA thermosensor facilitates increased target gene expression at lower temperatures. In addition to the characterization of the first RNA-based thermosensor in the significant pathogen S. aureus, it highlights the diversity of function within this important class of ribo-regulators.


Asunto(s)
Regiones no Traducidas 5' , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , ARN Bacteriano/genética , Staphylococcus aureus/genética , Temperatura , Biopelículas , Escherichia coli/metabolismo , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Genes Reporteros , Genoma Bacteriano , Humanos , Mutagénesis Sitio-Dirigida , Estructura Secundaria de Proteína , ARN/análisis , Procesamiento Postranscripcional del ARN , Infecciones Estafilocócicas/microbiología , Virulencia , Factores de Virulencia/genética
14.
Microbiologyopen ; 6(3)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28127899

RESUMEN

Like most bacteria, Shigella must maintain a precise balance between the necessity and toxicity of iron; a balance that is achieved, at least in part, by regulating the production of bacterial iron acquisition systems in response to specific environmental signals. Using the Shigella heme utilization (Shu) system, S. dysenteriae is able to acquire iron from heme, a potentially rich source of nutritional iron within the otherwise iron-limited environment of the human host. Investigations presented within reveal two distinct molecular mechanisms underlying previously uncharacterized transcriptional and translational regulation of shuT, a gene encoding the periplasmic-binding component of the Shu system. While shuT transcription is regulated in response to iron availability via a process dependent upon the global regulator Fur and a Fur-binding site located immediately downstream of the promoter, shuT translation is regulated in response to environmental temperature via the activity of an RNA thermometer located within the 5' untranslated region of the gene. Such complex regulation likely increases the fitness of S. dysenteriae by ensuring maximal ShuT production when the pathogen is within the iron-limited and relatively warm environment of the infected host, the only environment in which heme will be encountered as a potential source of essential iron.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Regulación Bacteriana de la Expresión Génica , Hierro/metabolismo , Shigella dysenteriae/efectos de los fármacos , Shigella dysenteriae/efectos de la radiación , Temperatura , Proteínas Bacterianas/genética , Biosíntesis de Proteínas , Shigella dysenteriae/genética , Shigella dysenteriae/metabolismo , Oligoelementos/metabolismo , Transcripción Genética
15.
Genes (Basel) ; 8(2)2017 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-28134784

RESUMEN

Small regulatory RNAs (sRNAs) of Shigella dysenteriae and other pathogens are vital for the regulation of virulence-associated genes and processes. Here, we characterize RyfA1, one member of a sibling pair of sRNAs produced by S. dysenteriae. Unlike its nearly identical sibling molecule, RyfA2, predicted to be encoded almost exclusively by non-pathogenic species, the presence of a gene encoding RyfA1, or a RyfA1-like molecule, is strongly correlated with virulence in a variety of enteropathogens. In S. dysenteriae, the overproduction of RyfA1 negatively impacts the virulence-associated process of cell-to-cell spread as well as the expression of ompC, a gene encoding a major outer membrane protein important for the pathogenesis of Shigella. Interestingly, the production of RyfA1 is controlled by a second sRNA, here termed RyfB1, the first incidence of one regulatory small RNA controlling another in S. dysenteriae or any Shigella species.

16.
Artículo en Inglés | MEDLINE | ID: mdl-26858941

RESUMEN

Within the past several years, RNA-mediated regulation (ribo-regulation) has become increasingly recognized for its importance in controlling critical bacterial processes. Regulatory RNA molecules, or riboregulators, are perpetually responsive to changes within the micro-environment of a bacterium. Notably, several characterized riboregulators control virulence in pathogenic bacteria, as is the case for each riboregulator characterized to date in Shigella. The timing of virulence gene expression and the ability of the pathogen to adapt to rapidly changing environmental conditions is critical to the establishment and progression of infection by Shigella species; ribo-regulators mediate each of these important processes. This mini review will present the current state of knowledge regarding RNA-mediated regulation in Shigella by detailing the characterization and function of each identified riboregulator in these pathogens.


Asunto(s)
Disentería Bacilar/patología , Regulación Bacteriana de la Expresión Génica/genética , ARN Pequeño no Traducido/genética , Shigella/genética , Shigella/patogenicidad , Factores de Virulencia/genética , Disentería Bacilar/microbiología , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/patología , Humanos , ARN Bacteriano/genética
17.
Artículo en Inglés | MEDLINE | ID: mdl-26904516

RESUMEN

Survival of Shigella within the host is strictly dependent on the ability of the pathogen to acquire essential nutrients, such as iron. As an innate immune defense against invading pathogens, the level of bio-available iron within the human host is maintained at exceeding low levels, by sequestration of the element within heme and other host iron-binding compounds. In response to sequestration mediated iron limitation, Shigella produce multiple iron-uptake systems that each function to facilitate the utilization of a specific host-associated source of nutrient iron. As a mechanism to balance the essential need for iron and the toxicity of the element when in excess, the production of bacterial iron acquisition systems is tightly regulated by a variety of molecular mechanisms. This review summarizes the current state of knowledge on the iron-uptake systems produced by Shigella species, their distribution within the genus, and the molecular mechanisms that regulate their production.


Asunto(s)
Hemo/metabolismo , Hierro/metabolismo , Shigella/metabolismo , Shigella/patogenicidad , Transporte Biológico , Regulación Bacteriana de la Expresión Génica , Humanos , Shigella/genética
18.
Artículo en Inglés | MEDLINE | ID: mdl-25389522

RESUMEN

Small RNA molecules (sRNAs) are now recognized as key regulators controlling bacterial gene expression, as sRNAs provide a quick and efficient means of positively or negatively altering the expression of specific genes. To date, numerous sRNAs have been identified and characterized in a myriad of bacterial species, but more recently, a theme in bacterial sRNAs has emerged: the presence of more than one highly related sRNAs produced by a given bacterium, here termed sibling sRNAs. Sibling sRNAs are those that are highly similar at the nucleotide level, and while it might be expected that sibling sRNAs exert identical regulatory functions on the expression of target genes based on their high degree of relatedness, emerging evidence is demonstrating that this is not always the case. Indeed, there are several examples of bacterial sibling sRNAs with non-redundant regulatory functions, but there are also instances of apparent regulatory redundancy between sibling sRNAs. This review provides a comprehensive overview of the current knowledge of bacterial sibling sRNAs, and also discusses important questions about the significance and evolutionary implications of this emerging class of regulators.


Asunto(s)
Bacterias/genética , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/genética , Bacterias/metabolismo , Bacterias/patogenicidad , Evolución Molecular , Genes Bacterianos , ARN Bacteriano/metabolismo , Virulencia/genética
19.
Curr Biol ; 24(16): 1826-35, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-25088560

RESUMEN

BACKGROUND: To function in diverse cellular processes, the dynamic behavior of microtubules (MTs) must be differentially regulated within the cell. In budding yeast, the spindle position checkpoint (SPOC) inhibits mitotic exit in response to mispositioned spindles. To maintain SPOC-mediated anaphase arrest, astral MTs must maintain persistent interactions with and/or extend through the bud neck. However, the molecular mechanisms that ensure the stability of these interactions are not known. RESULTS: The presence of an MT extending through and/or interacting with the bud neck is maintained by spatial control of catastrophe and rescue, which extends MT lifetime >25-fold and controls the length of dynamic MTs within the bud compartment. Moreover, the single kinesin-8 motor Kip3 alternately mediates both catastrophe and rescue of the bud MT. Kip3 accumulates in a length-dependent manner along the lattice of MTs within the bud, yet induces catastrophe spatially near the bud tip. Rather, this accumulation of Kip3 facilitates its association with depolymerizing MT plus ends, where Kip3 promotes rescue before MTs exit the bud. MT rescue within the bud requires the tail domain of Kip3, whereas the motor domain mediates catastrophe at the bud tip. In vitro, Kip3 exerts both stabilizing and destabilizing effects on reconstituted yeast MTs. CONCLUSIONS: The kinesin-8 Kip3 is a multifunctional regulator that differentially stabilizes and destabilizes specific MTs. Control over MT catastrophe and rescue by Kip3 defines the length and lifetime of MTs within the bud compartment of cells with mispositioned spindles. This subcellular regulation of MT dynamics is critical to maintaining mitotic arrest in response to mispositioned spindles.


Asunto(s)
Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Anafase , Microtúbulos/genética
20.
Metallomics ; 5(4): 276-86, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23340911

RESUMEN

For most living organisms, iron is both essential and potentially toxic, making the precise maintenance of iron homeostasis necessary for survival. To manage this paradox, bacteria regulate the acquisition, utilization, and storage of iron in response to its availability. The iron-dependent ferric uptake repressor (Fur) often mediates this iron-responsive regulation by both direct and indirect mechanisms. In 2002, Masse and Gottesman identified a novel target of Fur-mediated regulation in Escherichia coli: a gene encoding a small regulatory RNA (sRNA) termed RyhB. Under conditions of iron-limitation, RyhB is produced and functions to regulate the expression of several target genes encoding iron-utilizing enzymes, iron acquisition systems, and iron storage factors. This pivotal finding provided the missing link between environmental iron-limitation and previously observed decreases in certain iron-dependent metabolic pathways, a phenomenon now referred to as an "iron-sparing" response. The discovery of RyhB opened the door to the rapidly expanding field of bacterial iron-regulated sRNAs, which continue to be identified and described in numerous bacterial species. Most striking are findings that the impact of iron-responsive sRNA regulation often extends beyond iron homeostasis, particularly with regard to production of virulence-associated factors by pathogenic bacteria. This review discusses trends in the collective body of work on iron-regulated sRNAs, highlighting both the regulatory mechanisms they utilize to control target gene expression and the impact of this regulation on basic processes controlling bacterial physiology and virulence.


Asunto(s)
Bacterias/metabolismo , Hierro/farmacología , ARN Bacteriano/metabolismo , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/patogenicidad , Modelos Biológicos , ARN sin Sentido/metabolismo , ARN Bacteriano/genética , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA