Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Syst Evol Microbiol ; 68(11): 3404-3408, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30204583

RESUMEN

We here describe a novel species in the Staphylococcus intermedius Group (SIG) which is phenotypically similar to Staphylococcus pseudintermedius but is genomically distinct from it and other SIG members, with an average nucleotide identity of 90.2 % with its closest relative S. intermedius. The description of Staphylococcus cornubiensis sp. nov. is based on strain NW1T (=NCTC 13950T=DSM 105366T) isolated from a human skin infection in Cornwall, UK. Although pathogenic, NW1T carries no known virulence genes or mobilizable antibiotic resistance genes and further studies are required to assess the prevalence of this species in humans as well as its potential presence in companion animals.


Asunto(s)
Filogenia , Enfermedades Cutáneas Bacterianas/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus/clasificación , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , Celulitis (Flemón)/microbiología , ADN Bacteriano/genética , Genes Bacterianos , Humanos , Masculino , Persona de Mediana Edad , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Staphylococcus/genética , Staphylococcus/aislamiento & purificación , Staphylococcus intermedius , Reino Unido
2.
Curr Res Microb Sci ; 4: 100184, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36908773

RESUMEN

Anthropogenic activities result in the release of antimicrobial resistant bacteria and a cocktail of antimicrobial compounds into the environment that may directly select or indirectly co-select for antimicrobial resistance (AMR). Many studies use metagenome sequencing or qPCR-based approaches to study the environmental resistome but these methods are limited by a priori knowledge. In this study, a functional metagenomic approach was used to explore biocide resistance mechanisms in two contaminated environments and a pristine site, and to identify whether potentially novel genes conferring biocide resistance also conferred resistance or reduced susceptibility to antibiotics. Resistance was predominately mediated through novel mechanisms exclusive of the well-known qac efflux genes. UDP-galactose 4-epimerase (galE) -like genes were identified in both contaminated environments and were shown to confer cross-resistance to biocides and clinically important antibiotics for the first time (to our knowledge), compared to knockout mutants. GalE -like genes were also co-located with transposons, suggesting mobilisation potential. These results show that housekeeping genes may play a significant yet underappreciated role in AMR in environmental microbiomes.

3.
Front Microbiol ; 14: 1259287, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854340

RESUMEN

Microplastics quickly become colonised by diverse microbial communities, known as the Plastisphere. There is growing concern that microplastics may support the enrichment and spread of pathogenic or antimicrobial resistant microorganisms, although research to support the unique role of microplastics in comparison to control particles remains inconclusive. Limitations to this research include the microbiological methods available for isolating adhered microbes. Culture-based methods provide some of the most established, accessible and cost-effective microbiological protocols, which could be extremely useful in helping to address some of the remaining key questions in Plastisphere research. Previous works have successfully cultured bacteria from plastics, but these have not yet been reviewed, nor compared in efficiency. In this study, we compared four common biofilm extraction methods (swabbing, sonication, vortexing, sonication followed by vortexing) to extract and culture a mixed community of bacteria from both microplastic (polyethylene, polypropylene and polystyrene) and control (wood and glass) particles. Biofilm extraction efficiency and viability of bacterial suspension was determined by comparing CFU/mL of four different groups of bacteria. This was verified against optical density and 16S rRNA qPCR. Overall, we found that all tested methods were able to remove biofilms, but to varying efficiencies. Sonicating particles with glass beads for 15 min, followed by vortexing for a further minute, generated the highest yield and therefore greatest removal efficiency of culturable, biofilm-forming bacteria.

4.
Front Vet Sci ; 10: 1079948, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36908515

RESUMEN

Introduction: Computer simulation games are increasingly being used in agriculture as a promising tool to study, support and influence real-life farming practices. We explored the potential of using simulation games to engage with sheep farmers on the ongoing challenge of reducing lameness. Working with UK stakeholders, we developed a game in which players are challenged with identifying all the lame sheep in a simulated flock. Here, we evaluate the game's potential to act as a tool to help assess, train and understand farmers' ability to recognize the early signs of lameness. Methods: Participants in the UK were invited to play the game in an online study, sharing with us their in-game scores alongside information relating to their real-life farming experience, how they played the game, and feedback on the game. Mixed methods were used to analyze this information in order to evaluate the game. Quantitative analyses consisted of linear modeling to test for statistical relationships between participants' in-game recall (% of the total number of lame sheep that were marked as lame), and the additional information they provided. Qualitative analyses of participants' feedback on the game consisted of thematic analysis and a Likert Scale questionnaire to contextualize the quantitative results and identify additional insights from the study. Results: Quantitative analyses identified no relationships between participants' (n = 63) recall scores and their real life farming experience, or the lameness signs they looked for when playing the game. The only relationship identified was a relationship between participants' recall score and time spent playing the game. Qualitative analyses identified that participants did not find the game sufficiently realistic or engaging, though several enjoyed playing it and saw potential for future development. Qualitative analyses also identified several interesting and less-expected insights about real-life lameness recognition practices that participants shared after playing the game. Discussion: Simulation games have potential as a tool in livestock husbandry education and research, but achieving the desired levels of realism and/or engagingness may be an obstacle to realizing this. Future research should explore this potential further, aided by larger budgets and closer collaboration with farmers, stockpeople, and veterinarians.

5.
Environ Toxicol Chem ; 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36416260

RESUMEN

The environment plays a critical role in the development, dissemination, and transmission of antimicrobial resistance (AMR). Pharmaceuticals and personal care products (PPCPs) enter the environment through direct application to the environment and through anthropogenic pollution. Although there is a growing body of evidence defining minimal selective concentrations (MSCs) of antibiotics and the role antibiotics play in horizontal gene transfer (HGT), there is limited evidence on the role of non-antibiotic PPCPs. Existing data show associations with the development of resistance or effects on bacterial growth rather than calculating selective endpoints. Research has focused on laboratory-based systems rather than in situ experiments, although PPCP concentrations found throughout wastewater, natural water, and soil environments are often within the range of laboratory-derived MSCs and at concentrations shown to promote HGT. Increased selection and HGT of AMR by PPCPs will result in an increase in total AMR abundance in the environment, increasing the risk of exposure and potential transmission of environmental AMR to humans. There is some evidence to suggest that humans can acquire resistance from environmental settings, with water environments being the most frequently studied. However, because this is currently limited, we recommend that more evidence be gathered to understand the risk the environment plays in regard to human health. In addition, we recommend that future research efforts focus on MSC-based experiments for non-antibiotic PPCPS, particularly in situ, and investigate the effect of PPCP mixtures on AMR. Environ Toxicol Chem 2022;00:1-14. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

6.
Microbiome ; 10(1): 124, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35953866

RESUMEN

BACKGROUND: Horizontal gene transfer (HGT) plays a critical role in the spread of antibiotic resistance and the evolutionary shaping of bacterial communities. Conjugation is the most well characterized pathway for the spread of antibiotic resistance, compared to transformation and transduction. While antibiotics have been found to induce HGT, it remains unknown whether non-antibiotic pharmaceuticals can facilitate conjugation at a microbial community-wide level. RESULTS: In this study, we demonstrate that several commonly consumed non-antibiotic pharmaceuticals (including carbamazepine, ibuprofen, naproxen and propranolol), at environmentally relevant concentrations (0.5 mg/L), can promote the conjugative transfer of IncP1-α plasmid-borne antibiotic resistance across entire microbial communities. The over-generation of reactive oxygen species in response to these non-antibiotic pharmaceuticals may contribute to the enhanced conjugation ratios. Cell sorting and 16S rRNA gene amplicon sequencing analyses indicated that non-antibiotic pharmaceuticals modulate transconjugant microbial communities at both phylum and genus levels. Moreover, microbial uptake ability of the IncP1-α plasmid was also upregulated under non-antibiotic pharmaceutical exposure. Several opportunistic pathogens, such as Acinetobacter and Legionella, were more likely to acquire the plasmid conferring multidrug resistance. CONCLUSIONS: Considering the high possibility of co-occurrence of pathogenic bacteria, conjugative IncP1-α plasmids and non-antibiotic pharmaceuticals in various environments (e.g., activated sludge systems), our findings illustrate the potential risk associated with increased dissemination of antibiotic resistance promoted by non-antibiotic pharmaceuticals in complex environmental settings. Video abstract.


Asunto(s)
Antibacterianos , Transferencia de Gen Horizontal , Antibacterianos/farmacología , Bacterias/genética , Preparaciones Farmacéuticas , Plásmidos/genética , ARN Ribosómico 16S
7.
Front Fungal Biol ; 3: 918717, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37746188

RESUMEN

This scoping review aims to summarise the current understanding of selection for antifungal resistance (AFR) and to compare and contrast this with selection for antibacterial resistance, which has received more research attention. AFR is an emerging global threat to human health, associated with high mortality rates, absence of effective surveillance systems and with few alternative treatment options available. Clinical AFR is well documented, with additional settings increasingly being recognised to play a role in the evolution and spread of AFR. The environment, for example, harbours diverse fungal communities that are regularly exposed to antifungal micropollutants, potentially increasing AFR selection risk. The direct application of effect concentrations of azole fungicides to agricultural crops and the incomplete removal of pharmaceutical antifungals in wastewater treatment systems are of particular concern. Currently, environmental risk assessment (ERA) guidelines do not require assessment of antifungal agents in terms of their ability to drive AFR development, and there are no established experimental tools to determine antifungal selective concentrations. Without data to interpret the selective risk of antifungals, our ability to effectively inform safe environmental thresholds is severely limited. In this review, potential methods to generate antifungal selective concentration data are proposed, informed by approaches used to determine antibacterial minimal selective concentrations. Such data can be considered in the development of regulatory guidelines that aim to reduce selection for AFR.

8.
Environ Toxicol Chem ; 2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36582150

RESUMEN

Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are important environmental contaminants. Nonetheless, what drives the evolution, spread, and transmission of antibiotic resistance dissemination is still poorly understood. The abundance of ARB and ARGs is often elevated in human-impacted areas, especially in environments receiving fecal wastes, or in the presence of complex mixtures of chemical contaminants, such as pharmaceuticals and personal care products. Self-replication, mutation, horizontal gene transfer, and adaptation to different environmental conditions contribute to the persistence and proliferation of ARB in habitats under strong anthropogenic influence. Our review discusses the interplay between chemical contaminants and ARB and their respective genes, specifically in reference to co-occurrence, potential biostimulation, and selective pressure effects, and gives an overview of mitigation by existing man-made and natural barriers. Evidence and strategies to improve the assessment of human health risks due to environmental antibiotic resistance are also discussed. Environ Toxicol Chem 2023;00:1-16. © 2022 SETAC.

9.
Water Res ; 200: 117233, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34038824

RESUMEN

Antibiotics and antimicrobials are used, misused and overused in human and veterinary medicine, animal husbandry and aquaculture. These compounds can persist in both human and animal waste and then enter the environment through a variety of mechanisms. Though generally measured environmental concentrations (MECs) of antibiotics in aquatic systems are significantly lower than point of therapeutic use concentrations, there is increasing evidence that suggests these concentrations may still enrich antimicrobial resistant bacteria. In light of this evidence, a rigorous and standardised novel methodology needs to be developed which can perform environmental risk assessment (ERA) of antimicrobials in terms of their selective potential as well as their environmental impact, to ensure that diffuse and point source discharges are safe. This review summarises and critically appraises the current methodological approaches that study selection at below point of therapeutic use, or sub-inhibitory, concentrations of antibiotics. We collate and compare selective concentration data generated to date. We recommend how these data can be interpreted in line with current ERA guidelines; outlining and describing novel concepts unique to risk assessment of AMR (such as direct selection of AMR or increased persistence of AMR). We consolidate terminology used thus far into a single framework that could be adopted moving forward, by proposing predicted no effect concentrations for resistance (PNECRs) and predicted no effect concentrations for persistence (PNECPs) be determined in AMR risk assessment. Such a framework will contribute to antibiotic stewardship and by extension, protection of human health, food security and the global economy.


Asunto(s)
Antibacterianos , Antiinfecciosos , Animales , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Bacterias , Farmacorresistencia Bacteriana , Humanos , Medición de Riesgo
10.
Commun Biol ; 3(1): 467, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32884065

RESUMEN

Determining the selective potential of antibiotics at environmental concentrations is critical for designing effective strategies to limit selection for antibiotic resistance. This study determined the minimal selective concentrations (MSCs) for macrolide and fluoroquinolone antibiotics included on the European Commission's Water Framework Directive's priority hazardous substances Watch List. The macrolides demonstrated positive selection for ermF at concentrations 1-2 orders of magnitude greater (>500 and <750 µg/L) than measured environmental concentrations (MECs). Ciprofloxacin illustrated positive selection for intI1 at concentrations similar to current MECs (>7.8 and <15.6 µg/L). This highlights the need for compound specific assessment of selective potential. In addition, a sub-MSC selective window defined by the minimal increased persistence concentration (MIPC) is described. Differential rates of negative selection (or persistence) were associated with elevated prevalence relative to the no antibiotic control below the MSC. This increased persistence leads to opportunities for further selection over time and risk of human exposure and environmental transmission.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Microbiana , Relación Dosis-Respuesta a Droga , Evolución Molecular , Humanos , Macrólidos/farmacología , Pruebas de Sensibilidad Microbiana , Selección Genética , Microbiología del Agua
11.
Environ Health Perspect ; 128(10): 107007, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33084388

RESUMEN

BACKGROUND: Antimicrobial resistance (AMR) is one of the most significant health threats to society. A growing body of research demonstrates selection for AMR likely occurs at environmental concentrations of antibiotics. However, no standardized experimental approaches for determining selective concentrations of antimicrobials currently exist, preventing appropriate environmental and human health risk assessment of AMR. OBJECTIVES: We aimed to design a rapid, simple, and cost-effective novel experimental assay to determine selective effect concentrations of antibiotics and to generate the largest experimental data set of selective effect concentrations of antibiotics to date. METHODS: Previously published methods and data were used to validate the assay, which determines the effect concentration based on reduction of bacterial community (wastewater) growth. Risk quotients for test antibiotics were generated to quantify risk. RESULTS: The assay (SELection End points in Communities of bacTeria, or the SELECT method) was used to rapidly determine selective effect concentrations of antibiotics. These were in good agreement with quantitative polymerase chain reaction effect concentrations determined within the same experimental system. The SELECT method predicted no effect concentrations were minimally affected by changes in the assay temperature, growth media, or microbial community used as the inoculum. The predicted no effect concentrations for antibiotics tested ranged from 0.05µg/L for ciprofloxacin to 1,250µg/L for erythromycin. DISCUSSION: The lack of evidence demonstrating environmental selection for AMR, and of associated human health risks, is a primary reason for the lack of action in the mitigation of release of antibiotics into the aquatic environment. We present a novel method that can reliably and rapidly fill this data gap to enable regulation and subsequent mitigation (where required) to lower the risk of selection for, and human exposure to, AMR in aquatic environments. In particular, ciprofloxacin and, to a lesser extent, azithromycin, cefotaxime, and trimethoprim all pose a significant risk for selection of AMR in the environment. https://doi.org/10.1289/EHP6635.


Asunto(s)
Bioensayo , Farmacorresistencia Bacteriana/genética , Monitoreo del Ambiente/métodos , Antibacterianos , Antiinfecciosos , Bacterias , Humanos , Medición de Riesgo , Aguas Residuales
12.
Int J Antimicrob Agents ; 53(6): 767-773, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30885807

RESUMEN

Bacterial communities are exposed to a cocktail of antimicrobial agents, including antibiotics, heavy metals and biocidal antimicrobials such as quaternary ammonium compounds (QACs). The extent to which these compounds may select or co-select for antimicrobial resistance (AMR) is not fully understood. In this study, human-associated, wastewater-derived bacterial communities were exposed to either benzalkonium chloride (BAC), ciprofloxacin or trimethoprim at sub-point-of-use concentrations for one week to determine selective and co-selective potential. Metagenome analyses were performed to determine effects on bacterial community structure and prevalence of antibiotic resistance genes (ARGs) and metal or biocide resistance genes (MBRGS). Ciprofloxacin had the greatest co-selective potential, significantly enriching for resistance mechanisms to multiple antibiotic classes. Conversely, BAC exposure significantly reduced relative abundance of ARGs and MBRGS, including the well characterised qac efflux genes. However, BAC exposure significantly impacted bacterial community structure. Therefore BAC, and potentially other QACs, did not play as significant a role in co-selection for AMR as antibiotics such as ciprofloxacin at sub-point-of-use concentrations in this study. This approach can be used to identify priority compounds for further study, to better understand evolution of AMR in bacterial communities exposed to sub-point-of-use concentrations of antimicrobials.


Asunto(s)
Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Biota/efectos de los fármacos , Farmacorresistencia Bacteriana , Selección Genética , Aguas Residuales/microbiología , Bacterias/clasificación , Bacterias/genética , Compuestos de Benzalconio/farmacología , Ciprofloxacina/farmacología , Evolución Molecular , Genes Bacterianos , Metagenómica , Trimetoprim/farmacología
14.
J Glob Antimicrob Resist ; 15: 262-267, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30071355

RESUMEN

OBJECTIVES: Recent research has demonstrated that natural populations of bacteria carry large numbers of mobile genetic elements that may harbour antibiotic resistance determinants. This study aimed to investigate carbapenem resistance in Gram-negative bacteria isolated from natural environments in Béjaïa (Algeria) and to determine the horizontal gene transfer potential of a subset of these antibiotic resistance genes (ARGs). METHODS: Antibiotic-resistant bacteria were isolated and the host was identified using MALDI-TOF/MS and 16S rRNA sequencing. ARG carriage was investigated by the double-disk synergy test, metallo-ß-lactamase (MBL) production test and PCR screening for carbapenemase genes. Conjugation experiments were performed to determine potential ARG mobility. To identify ARGs, genomic libraries were constructed and functionally screened and inserts were sequenced. RESULTS: A total of 62 antibiotic-resistant strains isolated from soil and water samples were classified as belonging to the Enterobacteriaceae, Pseudomonadaceae, Xanthomonadaceae and Aeromonadaceae families. Four highly imipenem-resistant (MIC>64µg/mL) and cefotaxime-resistant (MIC>8µg/mL) clinically-relevant strains were selected for further characterisation. All four strains produced extended-spectrum ß-lactamases, but MBL production was not confirmed. Imipenem and cefotaxime resistance was transferable to Escherichia coli but was not conferred by blaAmpC, blaIMP, blaNDM, blaKPC, blaOXA-48 or blaGES genes. Novel putative resistance mechanisms were identified, including a novel DHA ß-lactamase conferring clinical resistance to cefotaxime. CONCLUSIONS: The environment is a reservoir of carbapenem-resistant bacteria. Further investigation of the evolution and dissemination of antibiotic resistance in environmental bacteria is required in order to understand and prevent the emergence of resistance in the clinical environment.


Asunto(s)
Antibacterianos/farmacología , Carbapenémicos/farmacología , Farmacorresistencia Bacteriana , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/aislamiento & purificación , Microbiología del Suelo , Microbiología del Agua , Argelia , Transferencia de Gen Horizontal , Bacterias Gramnegativas/clasificación , Bacterias Gramnegativas/genética , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana
15.
mBio ; 9(4)2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-30042197

RESUMEN

Recent research has demonstrated that selection for antibiotic resistance occurs at very low antibiotic concentrations in single-species experiments, but the relevance of these findings when species are embedded in complex microbial communities is unclear. We show that the strength of selection for naturally occurring resistance alleles in a complex community remains constant from low subinhibitory to above clinically relevant concentrations. Selection increases with antibiotic concentration before reaching a plateau where selection remains constant over a 2-order-magnitude concentration range. This is likely to be due to cross protection of the susceptible bacteria in the community following rapid extracellular antibiotic degradation by the resistant population, shown experimentally through a combination of chemical quantification and bacterial growth experiments. Metagenome and 16S rRNA analyses of sewage-derived bacterial communities evolved under cefotaxime exposure show preferential enrichment for blaCTX-M genes over all other beta-lactamase genes, as well as positive selection and co-selection for antibiotic resistant, opportunistic pathogens. These findings have far-reaching implications for our understanding of the evolution of antibiotic resistance, by challenging the long-standing assumption that selection occurs in a dose-dependent manner.IMPORTANCE Antibiotic resistance is one of the greatest global issues facing society. Still, comparatively little is known about selection for resistance at very low antibiotic concentrations. We show that the strength of selection for clinically important resistance genes within a complex bacterial community can remain constant across a large antibiotic concentration range (wide selective space). Therefore, largely understudied ecological compartments could be just as important as clinical environments for selection of antibiotic resistance.


Asunto(s)
Antibacterianos/farmacología , Cefotaxima/farmacología , Resistencia a las Cefalosporinas , Microbiota/efectos de los fármacos , Selección Genética , Aguas del Alcantarillado/microbiología , Cefalosporinasa/genética , Cefalosporinasa/metabolismo , Análisis por Conglomerados , ADN Ribosómico/química , ADN Ribosómico/genética , Metagenómica , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
16.
Environ Int ; 114: 326-333, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29343413

RESUMEN

BACKGROUND: Antibiotic-resistant bacteria (ARB) present a global public health problem. With numbers of community-acquired resistant infections increasing, understanding the mechanisms by which people are exposed to and colonised by ARB can help inform effective strategies to prevent their spread. The role natural environments play in this is poorly understood. This is the first study to combine surveillance of ARB in bathing waters, human exposure estimates and association between exposure and colonisation by ARB in water users. METHODS: 97 bathing water samples from England and Wales were analysed for the proportion of E. coli harbouring blaCTX-M. These data were used to estimate the likelihood of water users ingesting blaCTX-M-bearing E. coli. Having identified surfers as being at risk of exposure to ARB, a cross-sectional study was conducted. Regular surfers and non-surfers were recruited to assess whether there is an association between surfing and gut colonisation by blaCTX-M-bearing E. coli. RESULTS: 11 of 97 bathing waters sampled were found to contain blaCTX-M-bearing E. coli. While the percentage of blaCTX-M-bearing E. coli in bathing waters was low (0.07%), water users are at risk of ingesting these ARB. It is estimated that over 2.5 million water sports sessions occurred in 2015 resulting in the ingestion of at least one blaCTX-M-bearing E. coli. In the epidemiological survey, 9/143 (6.3%) surfers were colonised by blaCTX-M-bearing E. coli, as compared to 2/130 (1.5%) of non-surfers (risk ratio=4.09, 95% CI 1.02 to 16.4, p=0.046). CONCLUSIONS: Surfers are at risk of exposure to and colonisation by clinically important antibiotic-resistant E. coli in coastal waters. Further research must be done on the role natural environments play in the transmission of ARB.


Asunto(s)
Farmacorresistencia Bacteriana , Exposición a Riesgos Ambientales/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Playas , Estudios Transversales , Monitoreo del Ambiente , Humanos , Natación/estadística & datos numéricos , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA