RESUMEN
STEM PhDs are a critical source of human capital in the economy, contributing to commercial as well as academic science. We examine whether STEM PhD students become new inventors (file their first patent) during their doctoral training at the top 25 U.S. universities (by patenting). We find that 4% of PhDs become new inventors. However, among PhDs of faculty who are themselves top (prolific) inventors, this figure rises to 23%. These faculty train 44% of all the new inventor PhDs by copatenting with their advisees. We also explore whether new inventor PhDs are equally distributed by gender. In our university sample, the female share of new inventors is 9% points (pp) lower than the female share of PhDs. Several channels contribute to this: First, female PhDs are less likely to be trained by top inventor advisors (TIs) than male PhDs. Second, they are less likely to be trained by (the larger number of) male top inventors: The estimated gap in the female % of PhDs between female and male TIs is 7 to 9 pp. Third, female PhDs (supervised by top inventors and especially by other faculty) have a lower probability of becoming new inventors relative to their male counterparts. Notably, we find that male and female top inventors have similar rates of transforming their female advisees into new inventors at 4 to 8 pp lower (17 to 26% lower rate) than for male advisees. The gap remains at 4 pp comparing students of the same advisor and controlling for thesis topic.
Asunto(s)
Docentes , Ciencia , Ciencia/educación , Ciencia/instrumentación , Invenciones , Caracteres Sexuales , EstudiantesRESUMEN
Aortic valve stenosis is the most common valve disease in the western world. Central to the pathogenesis of this disease is the growth of new blood vessels (angiogenesis) within the aortic valve allowing infiltration of immune cells and development of intra-valve inflammation. Identifying the cellular mediators involved in this angiogenesis is important as this may reveal new therapeutic targets which could ultimately prevent the progression of aortic valve stenosis. Aortic valves from patients undergoing surgery for aortic valve replacement or dilation of the aortic arch were examined both ex vivo and in vitro. We now demonstrate that the anti-angiogenic protein, soluble fms-like tyrosine kinase 1 (sFlt1), a non-signalling soluble receptor for vascular endothelial growth factor, is constitutively expressed in non-diseased valves. sFlt-1 expression was, however, significantly reduced in aortic valve tissue from patients with aortic valve stenosis while protein markers of hypoxia were simultaneously increased. Exposure of primary-cultured valve interstitial cells to hypoxia resulted in a decrease in the expression of sFlt-1. We further reveal using a bioassay that siRNA knock-down of sFlt1 in valve interstitial cells directly results in a pro-angiogenic environment. Finally, incubation of aortic valves with sphingosine 1-phosphate, a bioactive lipid-mediator, increased sFlt-1 expression and inhibited angiogenesis within valve tissue. In conclusion, this study demonstrates that sFlt1 expression is directly correlated with angiogenesis in aortic valves and the observed decrease in sFlt-1 expression in aortic valve stenosis could increase valve inflammation, promoting disease progression. This could be a viable therapeutic target in treating this disease.
Asunto(s)
Estenosis de la Válvula Aórtica , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Humanos , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Estenosis de la Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Inflamación/patología , Hipoxia/metabolismoRESUMEN
The molecular mechanisms by which receptor tyrosine kinases (RTKs) and heterotrimeric G proteins, two major signaling hubs in eukaryotes, independently relay signals across the plasma membrane have been extensively characterized. How these hubs cross-talk has been a long-standing question, but answers remain elusive. Using linear ion-trap mass spectrometry in combination with biochemical, cellular, and computational approaches, we unravel a mechanism of activation of heterotrimeric G proteins by RTKs and chart the key steps that mediate such activation. Upon growth factor stimulation, the guanine-nucleotide exchange modulator dissociates Gαiâ¢ßγ trimers, scaffolds monomeric Gαi with RTKs, and facilitates the phosphorylation on two tyrosines located within the interdomain cleft of Gαi. Phosphorylation triggers the activation of Gαi and inhibits second messengers (cAMP). Tumor-associated mutants reveal how constitutive activation of this pathway impacts cell's decision to "go" vs. "grow." These insights define a tyrosine-based G protein signaling paradigm and reveal its importance in eukaryotes.
Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Células COS , Chlorocebus aethiops , Receptores ErbB/metabolismo , Células HEK293 , Células HeLa , Proteínas de Unión al GTP Heterotriméricas/fisiología , Humanos , Fosforilación , Proteínas Tirosina Quinasas Receptoras/fisiología , Transducción de Señal , Tirosina/metabolismoRESUMEN
IL-33 and its receptor ST2 are contributing factors to airway inflammation and asthma exacerbation. The IL-33/ST2 signaling pathway is involved in both the onset and the acute exacerbations of asthma. In this study, we address the role of endogenous IL-33 and its autoamplification of the IL-33/ST2 pathway in Ag-dependent and Ag-independent asthma-like models. Wild-type, IL-33 knockout, ST2 knockout mice were either intratracheally administrated with 500 ng of rIL-33 per day for four consecutive days or were sensitized and challenged with OVA over 21 d. In wild-type mice, IL-33 or OVA induced similar airway hyperresponsiveness and eosinophilic airway inflammation. IL-33 induced its own mRNA and ST2L mRNA expression in the lung. IL-33 autoamplified itself and ST2 protein expression in airway epithelial cells. OVA also induced IL-33 and ST2 protein expression. In IL-33 knockout mice, the IL-33- and OVA-induced airway hyperresponsiveness and eosinophilic airway inflammation were both significantly attenuated, whereas IL-33-induced ST2L mRNA expression was preserved, although no autoamplification of IL-33/ST2 pathway was observed. In ST2 knockout mice, IL-33 and OVA induced airway hyperresponsiveness and eosinophilic airway inflammation were both completely diminished, and no IL-33/ST2 autoamplification was observed. These results suggest that endogenous IL-33 and its autoamplification of IL-33/ST2 pathway play an important role in the induction of asthma-like phenotype. Thus an intact IL-33/ST2 pathway is necessary for both Ag-dependent and Ag-independent asthma-like mouse models.
Asunto(s)
Asma/inmunología , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Mucosa Respiratoria/inmunología , Transducción de Señal/inmunología , Alérgenos/administración & dosificación , Alérgenos/inmunología , Animales , Asma/sangre , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Modelos Animales de Enfermedad , Eosinófilos/inmunología , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Humanos , Proteína 1 Similar al Receptor de Interleucina-1/genética , Interleucina-33/administración & dosificación , Interleucina-33/genética , Ratones , Ratones Noqueados , Ovalbúmina/administración & dosificación , Ovalbúmina/inmunología , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/inmunología , Mucosa Respiratoria/citología , Mucosa Respiratoria/metabolismo , Transducción de Señal/genéticaRESUMEN
The inductive role of dendritic cells (DC) in Th2 differentiation has not been fully defined. We addressed this gap in knowledge by focusing on signaling events mediated by the heterotrimeric GTP binding proteins Gαs, and Gαi, which respectively stimulate and inhibit the activation of adenylyl cyclases and the synthesis of cAMP. We show here that deletion of Gnas, the gene that encodes Gαs in mouse CD11c(+) cells (Gnas(ΔCD11c) mice), and the accompanying decrease in cAMP provoke Th2 polarization and yields a prominent allergic phenotype, whereas increases in cAMP inhibit these responses. The effects of cAMP on DC can be demonstrated in vitro and in vivo and are mediated via PKA. Certain gene products made by Gnas(ΔCD11c) DC affect the Th2 bias. These findings imply that G protein-coupled receptors, the physiological regulators of Gαs and Gαi activation and cAMP formation, act via PKA to regulate Th bias in DC and in turn, Th2-mediated immunopathologies.
Asunto(s)
Asma/inmunología , AMP Cíclico/metabolismo , Células Dendríticas/metabolismo , Hipersensibilidad/inmunología , Células Th2/inmunología , Traslado Adoptivo , Animales , Cromograninas , Células Dendríticas/citología , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , RatonesRESUMEN
NEW FINDINGS: What is the central question of this study? Non-invasive, quantitative methods to assess right cardiac function in mice with pulmonary hypertension have not been demonstrated. What is the main finding and its importance? This study shows the potential of magnetic resonance imaging to estimate right ventricular ejection fraction and measure spatial, dynamic changes in cardiac structure in the Sugen 5416/hypoxia mouse model of pulmonary hypertension. Pulmonary arterial hypertension (PAH) is characterized by elevated pulmonary artery pressures and right heart failure. Mouse models of PAH are instrumental in understanding the disease pathophysiology. However, few methods are available to evaluate right cardiac function in small animals. In this study, magnetic resonance imaging was used to measure in vivo cardiac dimensions in the Sugen 5416/hypoxia mouse model. Pulmonary hypertension (PH) was induced in C57BL/6 mice by 3 weeks of exposure to 10% oxygen and vascular endothelial growth factor receptor inhibition (20 mg kg-1 SU5416). Control mice were housed in room air and received vehicle (DMSO). Right ventricular pressures were recorded with a pressure-conductance transducer. Short-axis contiguous 1-mm-thick slices were acquired through the heart and great vessels using a fast low-angle shot (FLASH)-cine sequence. Thirteen images were collected throughout each cardiac cycle. Right ventricular systolic pressure was elevated in PH mice (23.6 ± 6 versus 41.0 ± 11 mmHg, control versus PH, respectively; P < 0.001, n = 5-11). Right ventricular wall thickness was greater in PH than in control mice at end diastole (0.30 ± 0.05 versus 0.48 ± 0.06 mm, control versus PH, respectively; P < 0.01, n = 6), but measurements were not different at end systole (control versus PH, 0.59 ± 0.11 versus 0.70 ± 0.11 mm, respectively). Right ventricular ejection fraction was decreased in PH mice (72 ± 3 versus 58 ± 5%, control versus PH, respectively; P < 0.04, n = 6). These data demonstrate that magnetic resonance imaging is a precise method to monitor right ventricular remodelling and cardiac output longitudinally in mouse models of PH.
Asunto(s)
Hipertensión Pulmonar/fisiopatología , Hipoxia/fisiopatología , Animales , Presión Sanguínea/fisiología , Gasto Cardíaco/fisiología , Diástole/fisiología , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Hipertensión Pulmonar/metabolismo , Hipoxia/metabolismo , Imagen por Resonancia Magnética/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Arteria Pulmonar/metabolismo , Volumen Sistólico/fisiología , Sístole/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Función Ventricular Derecha/fisiología , Remodelación Ventricular/fisiologíaRESUMEN
Rare copy number variants (CNVs) have a prominent role in the aetiology of schizophrenia and other neuropsychiatric disorders. Substantial risk for schizophrenia is conferred by large (>500-kilobase) CNVs at several loci, including microdeletions at 1q21.1 (ref. 2), 3q29 (ref. 3), 15q13.3 (ref. 2) and 22q11.2 (ref. 4) and microduplication at 16p11.2 (ref. 5). However, these CNVs collectively account for a small fraction (2-4%) of cases, and the relevant genes and neurobiological mechanisms are not well understood. Here we performed a large two-stage genome-wide scan of rare CNVs and report the significant association of copy number gains at chromosome 7q36.3 with schizophrenia. Microduplications with variable breakpoints occurred within a 362-kilobase region and were detected in 29 of 8,290 (0.35%) patients versus 2 of 7,431 (0.03%) controls in the combined sample. All duplications overlapped or were located within 89 kilobases upstream of the vasoactive intestinal peptide receptor gene VIPR2. VIPR2 transcription and cyclic-AMP signalling were significantly increased in cultured lymphocytes from patients with microduplications of 7q36.3. These findings implicate altered vasoactive intestinal peptide signalling in the pathogenesis of schizophrenia and indicate the VPAC2 receptor as a potential target for the development of new antipsychotic drugs.
Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Genes Duplicados/genética , Predisposición Genética a la Enfermedad/genética , Receptores de Tipo II del Péptido Intestinal Vasoactivo/genética , Esquizofrenia/genética , Línea Celular , Cromosomas Humanos Par 7/genética , Estudios de Cohortes , AMP Cíclico/metabolismo , Femenino , Dosificación de Gen/genética , Estudio de Asociación del Genoma Completo , Humanos , Patrón de Herencia/genética , Masculino , Linaje , Receptores de Tipo II del Péptido Intestinal Vasoactivo/metabolismo , Reproducibilidad de los Resultados , Esquizofrenia/metabolismo , Transducción de Señal , Transcripción Genética/genéticaRESUMEN
Entrepreneurship is a central path to job creation, economic growth, and prosperity. In the earliest stages of start-up business creation, the matching of entrepreneurial ventures to investors is critically important. The entrepreneur's business proposition and previous experience are regarded as the main criteria for investment decisions. Our research, however, documents other critical criteria that investors use to make these decisions: the gender and physical attractiveness of the entrepreneurs themselves. Across a field setting (three entrepreneurial pitch competitions in the United States) and two experiments, we identify a profound and consistent gender gap in entrepreneur persuasiveness. Investors prefer pitches presented by male entrepreneurs compared with pitches made by female entrepreneurs, even when the content of the pitch is the same. This effect is moderated by male physical attractiveness: attractive males were particularly persuasive, whereas physical attractiveness did not matter among female entrepreneurs.
Asunto(s)
Emprendimiento , Inversiones en Salud , Factores Sexuales , Animales , Humanos , Masculino , ConejosRESUMEN
Phosphorylcholine (PC) is a classic T-independent Ag that is exposed on apoptotic cells, oxidized phospholipids, and bacterial polysaccharides. Experimental as well as epidemiological studies have over the past decade implicated Abs against PC (anti-PC) as anti-inflammatory and a strong protective factor in cardiovascular disease. Although clinically important, little is known about the development of anti-PC in humans. This study was conceived to dissect the human anti-PC repertoire and generate human mAbs. We designed a PC-specific probe to identify, isolate, and characterize PC-reactive B cells from 10 healthy individuals. The donors had all mounted somatically mutated Abs toward PC using a broad variety of Ig genes. PC-reactive B cells were primarily found in the IgM(+) memory subset, although significant numbers also were detected among naive, IgG(+), and CD27(+)CD43(+) B cells. Abs from these subsets were clonally related, suggesting a common origin. mAbs derived from the same donors exhibited equivalent or higher affinity for PC than the well-characterized murine T-15 clone. These results provide novel insights into the cellular and molecular ontogeny of atheroprotective PC Abs, thereby offering new opportunities for Ab-based therapeutic interventions.
Asunto(s)
Anticuerpos Antifosfolípidos/inmunología , Subgrupos de Linfocitos B/inmunología , Inmunoglobulina M/inmunología , Memoria Inmunológica/fisiología , Fosforilcolina/inmunología , Adulto , Animales , Subgrupos de Linfocitos B/citología , Femenino , Humanos , Inmunoglobulina G/inmunología , Masculino , RatonesRESUMEN
Most people are able to recognise familiar tunes even when played in a different key. It is assumed that this depends on a general capacity for relative pitch perception; the ability to recognise the pattern of inter-note intervals that characterises the tune. However, when healthy adults are required to detect rare deviant melodic patterns in a sequence of randomly transposed standard patterns they perform close to chance. Musically experienced participants perform better than naïve participants, but even they find the task difficult, despite the fact that musical education includes training in interval recognition.To understand the source of this difficulty we designed an experiment to explore the relative influence of the size of within-pattern intervals and between-pattern transpositions on detecting deviant melodic patterns. We found that task difficulty increases when patterns contain large intervals (5-7 semitones) rather than small intervals (1-3 semitones). While task difficulty increases substantially when transpositions are introduced, the effect of transposition size (large vs small) is weaker. Increasing the range of permissible intervals to be used also makes the task more difficult. Furthermore, providing an initial exact repetition followed by subsequent transpositions does not improve performance. Although musical training correlates with task performance, we find no evidence that violations to musical intervals important in Western music (i.e. the perfect fifth or fourth) are more easily detected. In summary, relative pitch perception does not appear to be conducive to simple explanations based exclusively on invariant physical ratios.
Asunto(s)
Música , Percepción de la Altura Tonal , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis y Desempeño de TareasRESUMEN
G protein-coupled receptors (GPCRs), the largest family of signaling receptors in the human genome, are also the largest class of targets of approved drugs. Are the optimal GPCRs (in terms of efficacy and safety) currently targeted therapeutically? Especially given the large number (â¼ 120) of orphan GPCRs (which lack known physiologic agonists), it is likely that previously unrecognized GPCRs, especially orphan receptors, regulate cell function and can be therapeutic targets. Knowledge is limited regarding the diversity and identity of GPCRs that are activated by endogenous ligands and that native cells express. Here, we review approaches to define GPCR expression in tissues and cells and results from studies using these approaches. We identify problems with the available data and suggest future ways to identify and validate the physiologic and therapeutic roles of previously unrecognized GPCRs. We propose that a particularly useful approach to identify functionally important GPCRs with therapeutic potential will be to focus on receptors that show selective increases in expression in diseased cells from patients and experimental animals.
Asunto(s)
Perfilación de la Expresión Génica/métodos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Terapia Molecular Dirigida , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Distribución TisularRESUMEN
Lesch-Nyhan syndrome (LNS) is a neurodevelopmental disorder caused by mutations in the gene encoding the purine metabolic enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT). A series of motor, cognitive and neurobehavioral anomalies characterize this disease phenotype, which is still poorly understood. The clinical manifestations of this syndrome are believed to be the consequences of deficiencies in neurodevelopmental pathways that lead to disordered brain function. We have used microRNA array and gene ontology analysis to evaluate the gene expression of differentiating HPRT-deficient human neuron-like cell lines. We set out to identify dysregulated genes implicated in purine-based cellular functions. Our approach was based on the premise that HPRT deficiency affects preeminently the expression and the function of purine-based molecular complexes, such as guanine nucleotide exchange factors (GEFs) and small GTPases. We found that several microRNAs from the miR-17 family cluster and genes encoding GEF are dysregulated in HPRT deficiency. Most notably, our data show that the expression of the exchange protein activated by cAMP (EPAC) is blunted in HPRT-deficient human neuron-like cell lines and fibroblast cells from LNS patients, and is altered in the cortex, striatum and midbrain of HPRT knockout mouse. We also show a marked impairment in the activation of small GTPase RAP1 in the HPRT-deficient cells, as well as differences in cytoskeleton dynamics that lead to increased motility for HPRT-deficient neuron-like cell lines relative to control. We propose that the alterations in EPAC/RAP1 signaling and cell migration in HPRT deficiency are crucial for neuro-developmental events that may contribute to the neurological dysfunctions in LNS.
Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Síndrome de Lesch-Nyhan/genética , MicroARNs/genética , Proteínas de Unión al GTP rap1/metabolismo , Animales , Línea Celular , Movimiento Celular/fisiología , Corteza Cerebral/metabolismo , Cuerpo Estriado/metabolismo , Citoesqueleto/metabolismo , Ontología de Genes , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Hipoxantina Fosforribosiltransferasa/deficiencia , Hipoxantina Fosforribosiltransferasa/genética , Síndrome de Lesch-Nyhan/enzimología , Masculino , Mesencéfalo/metabolismo , Ratones , Ratones Noqueados , MicroARNs/metabolismo , Familia de Multigenes , Análisis de Secuencia por Matrices de Oligonucleótidos , Transducción de Señal , Proteínas de Unión al GTP rap1/genéticaRESUMEN
Richter syndrome (RS) occurs in up to 15% of patients with chronic lymphocytic leukemia (CLL). Although RS, usually represented by the histologic transformation to a diffuse large B-cell lymphoma (DLBCL), is associated with a very poor outcome, especially when clonally related to the preexisting CLL, the mechanisms leading to RS have not been clarified. To better understand the pathogenesis of RS, we analyzed a series of cases including 59 RS, 28 CLL phase of RS, 315 CLL, and 127 de novo DLBCL. RS demonstrated a genomic complexity intermediate between CLL and DLBCL. Cell-cycle deregulation via inactivation of TP53 and of CDKN2A was a main mechanism in the histologic transformation from CLL phase, being present in approximately one half of the cases, and affected the outcome of the RS patients. A second major subgroup was characterized by the presence of trisomy 12 and comprised one third of the cases. Although RS shared some of the lesions seen in de novo DLBCL, its genomic profile was clearly separate. The CLL phase preceding RS had not a generalized increase in genomic complexity compared with untransformed CLL, but it presented clear differences in the frequency of specific genetic lesions.
Asunto(s)
Transformación Celular Neoplásica/genética , Regulación Leucémica de la Expresión Génica/genética , Leucemia Linfocítica Crónica de Células B/genética , Linfoma de Células B Grandes Difuso/genética , Cromosomas Humanos Par 12/genética , Progresión de la Enfermedad , Femenino , Genes p16/fisiología , Estudio de Asociación del Genoma Completo , Humanos , Leucemia Linfocítica Crónica de Células B/patología , Linfoma de Células B Grandes Difuso/patología , Masculino , Persona de Mediana Edad , Trisomía/genética , Proteína p53 Supresora de Tumor/genéticaRESUMEN
Parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF-23) enhance phosphate excretion by the proximal tubule of the kidney by retrieval of the sodium-dependent phosphate transporters (Npt2a and Npt2c) from the apical plasma membrane. PTH activates adenylyl cyclase (AC) through PTH 1 receptors and stimulates the cAMP/PKA signaling pathway. However, the precise role and isoform(s) of AC in phosphate homeostasis are not known. We report here that mice lacking AC6 (AC6(-/-)) have increased plasma PTH and FGF-23 levels compared with wild-type (WT) mice but comparable plasma phosphate concentrations. Acute activation of the calcium-sensing receptor or feeding a zero phosphate diet almost completely suppressed plasma PTH levels in both AC6(-/-) and WT mice, indicating a secondary cause for hyperparathyroidism. Pharmacologic blockade of FGF receptors resulted in a comparable increase in plasma phosphate between genotypes, whereas urinary phosphate remained significantly higher in AC6(-/-) mice. Compared with WT mice, AC6(-/-) mice had reduced renal Npt2a and Npt2c protein abundance, with approximately 80% of Npt2a residing in lysosomes. WT mice responded to exogenous PTH with redistribution of Npt2a from proximal tubule microvilli to intracellular compartments and lysosomes alongside a PTH-induced dose-response relationship for fractional phosphate excretion and urinary cAMP excretion. These responses were absent in AC6(-/-) mice. In conclusion, AC6 in the proximal tubule modulates cAMP formation, Npt2a trafficking, and urinary phosphate excretion, which are highlighted by renal phosphate wasting in AC6(-/-) mice.
Asunto(s)
Adenilil Ciclasas/genética , Enfermedades Renales/genética , Riñón/metabolismo , Fosfatos/química , Adenilil Ciclasas/metabolismo , Animales , AMP Cíclico/metabolismo , Femenino , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Homeostasis , Hiperparatiroidismo/genética , Hiperfosfatemia/genética , Inmunohistoquímica , Lisosomas/metabolismo , Masculino , Ratones , Ratones Transgénicos , Hormona Paratiroidea/metabolismo , Fenotipo , Fosfatos/orina , Transporte de Proteínas , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/metabolismoRESUMEN
Mounting evidence indicates that grouping of chronic lymphocytic leukemia (CLL) into distinct subsets with stereotyped BCRs is functionally and prognostically relevant. However, several issues need revisiting, including the criteria for identification of BCR stereotypy and its actual frequency as well as the identification of "CLL-biased" features in BCR Ig stereotypes. To this end, we examined 7596 Ig VH (IGHV-IGHD-IGHJ) sequences from 7424 CLL patients, 3 times the size of the largest published series, with an updated version of our purpose-built clustering algorithm. We document that CLL may be subdivided into 2 distinct categories: one with stereotyped and the other with nonstereotyped BCRs, at an approximate ratio of 1:2, and provide evidence suggesting a different ontogeny for these 2 categories. We also show that subset-defining sequence patterns in CLL differ from those underlying BCR stereotypy in other B-cell malignancies. Notably, 19 major subsets contained from 20 to 213 sequences each, collectively accounting for 943 sequences or one-eighth of the cohort. Hence, this compartmentalized examination of VH sequences may pave the way toward a molecular classification of CLL with implications for targeted therapeutic interventions, applicable to a significant number of patients assigned to the same subset.
Asunto(s)
Leucemia Linfocítica Crónica de Células B/clasificación , Leucemia Linfocítica Crónica de Células B/genética , Técnicas de Diagnóstico Molecular/métodos , Terapia Molecular Dirigida , Receptores de Antígenos de Linfocitos B/genética , Secuencia de Aminoácidos , Reordenamiento Génico de Linfocito B/genética , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/genética , Inmunofenotipificación , Leucemia Linfocítica Crónica de Células B/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Terapia Molecular Dirigida/métodos , Terapia Molecular Dirigida/tendencias , Receptores de Antígenos de Linfocitos B/metabolismo , Hipermutación Somática de Inmunoglobulina/genéticaRESUMEN
Public engagement with research (PEwR) has become increasingly integral to research practices. This paper explores the process and outcomes of a collaborative effort to address the ethical implications of PEwR activities and develop tools to navigate them within the context of a University Medical School. The activities this paper reflects on aimed to establish boundaries between research data collection and PEwR activities, support colleagues in identifying the ethical considerations relevant to their planned activities, and build confidence and capacity among staff to conduct PEwR projects. The development process involved the creation of a taxonomy outlining key terms used in PEwR work, a self-assessment tool to evaluate the need for formal ethical review, and a code of conduct for ethical PEwR. These tools were refined through iterative discussions and feedback from stakeholders, resulting in practical guidance for researchers navigating the ethical complexities of PEwR. Additionally, reflective prompts were developed to guide researchers in planning and conducting engagement activities, addressing a crucial aspect often overlooked in formal ethical review processes. The paper reflects on the broader regulatory landscape and the limitations of existing approval and governance processes, and prompts critical reflection on the compatibility of formal approval processes with the ethos of PEwR. Overall, the paper offers insights and practical guidance for researchers and institutions grappling with ethical considerations in PEwR, contributing to the ongoing conversation surrounding responsible research practices.
RESUMEN
Circadian rhythms are biological rhythms that originate from the "master circadian clock," called the suprachiasmatic nucleus (SCN). SCN orchestrates the circadian rhythms using light as a chief zeitgeber, enabling humans to synchronize their daily physio-behavioral activities with the Earth's light-dark cycle. However, chronic/ irregular photic disturbances from the retina via the retinohypothalamic tract (RHT) can disrupt the amplitude and the expression of clock genes, such as the period circadian clock 2, causing circadian rhythm disruption (CRd) and associated neuropathologies. The present review discusses neuromodulation across the RHT originating from retinal photic inputs and modulation offered by endocannabinoids as a function of mitigation of the CRd and associated neuro-dysfunction. Literature indicates that cannabinoid agonists alleviate the SCN's ability to get entrained to light by modulating the activity of its chief neurotransmitter, i.e., γ-aminobutyric acid, thus preventing light-induced disruption of activity rhythms in laboratory animals. In the retina, endocannabinoid signaling modulates the overall gain of the retinal ganglion cells by regulating the membrane currents (Ca2+, K+, and Cl- channels) and glutamatergic neurotransmission of photoreceptors and bipolar cells. Additionally, endocannabinoids signalling also regulate the high-voltage-activated Ca2+ channels to mitigate the retinal ganglion cells and intrinsically photosensitive retinal ganglion cells-mediated glutamate release in the SCN, thus regulating the RHT-mediated light stimulation of SCN neurons to prevent excitotoxicity. As per the literature, cannabinoid receptors 1 and 2 are becoming newer targets in drug discovery paradigms, and the involvement of endocannabinoids in light-induced CRd through the RHT may possibly mitigate severe neuropathologies.
Asunto(s)
Ritmo Circadiano , Endocannabinoides , Retina , Endocannabinoides/metabolismo , Endocannabinoides/fisiología , Humanos , Animales , Ritmo Circadiano/fisiología , Retina/fisiología , Retina/metabolismo , Núcleo Supraquiasmático/fisiología , Núcleo Supraquiasmático/efectos de los fármacosRESUMEN
Approximately 1 in 4 people worldwide have non-alcoholic fatty liver disease (NAFLD); however, there are currently no medications to treat this condition. This study investigated the role of adiposity-associated orphan G protein-coupled receptor 75 (GPR75) in liver lipid accumulation. We profiled Gpr75 expression and report that it is most abundant in the brain. Next, we generated the first single-cell-level analysis of Gpr75 and identified a subpopulation co-expressed with key appetite-regulating hypothalamic neurons. CRISPR-Cas9-deleted Gpr75 mice fed a palatable western diet high in fat adjusted caloric intake to remain in energy balance, thereby preventing NAFLD. Consistent with mouse results, analysis of whole-exome sequencing data from 428,719 individuals (UK Biobank) revealed that variants in GPR75 are associated with a reduced likelihood of hepatic steatosis. Here, we provide a significant advance in understanding of the expression and function of GPR75, demonstrating that it is a promising pharmaceutical target for NAFLD treatment.
Asunto(s)
Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Ratones , Humanos , Masculino , Tejido Adiposo/metabolismo , Ratones Noqueados , Hígado/metabolismo , Femenino , AdiposidadRESUMEN
Recent studies indicate that cyclic AMP (cAMP) induces cytotoxic T lymphocyte antigen (CTLA) 4. CTLA4 is expressed in T cells, and is a negative regulator of T cell activation. CTLA4 expression is regulated by T cell receptor plus CD28 (adaptive immune signaling) at both the transcriptional and post-transcriptional level. Here, we examine the pathways by which cAMP regulates CTLA4 expression, focusing on transcriptional activation. Elevating intracellular cAMP levels by cell-permeable cAMP analogs, the adenylyl cyclase activator, forskolin, or phosphodiesterase inhibitors increases CTLA4 mRNA expression in EL4 murine T cells and primary CD4(+) T cells. Activation of protein kinase A (using the protein kinase A-selective agonist, N6-phenyladenosine-cAMP), but not exchange proteins activated by cAMP (using the exchange proteins activated by cAMP-selective 8-pCPT-2Me-cAMP), increases CTLA4 promoter activity. Mutation constructs of the CTLA4 promoter uncover an enhancer binding site located within the -150 to -130 bp region relative to the transcription start site. Promoter analysis and chromatin immunoprecipitation assays suggest that cAMP response element-binding is a putative transcription factor induced by cAMP. We have previously shown that CTLA4 mediates decreased pulmonary inflammation in an LPS-induced murine model of acute lung injury (ALI). We observed that LPS can induce CTLA4 transcription via the same cAMP-inducible promoter region. The immunosuppressant, rapamycin, decreases cAMP and LPS-induced CTLA4 transcription in vitro. In vivo, LPS induces cAMP accumulation in bronchoalveolar lavage fluid, bronchoalveolar lavage cells, and lung tissues in ALI. We demonstrate that rapamycin decreases cAMP accumulation and CTLA4 expression in ALI. Together, these data suggest that cAMP may negatively regulate pulmonary inflammatory responses in vivo and in vitro by altering CTLA4 expression.
Asunto(s)
Antígeno CTLA-4/metabolismo , AMP Cíclico/metabolismo , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/metabolismo , Inmunidad Adaptativa , Animales , Secuencia de Bases , Antígeno CTLA-4/genética , Línea Celular , Inmunidad Innata , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/inmunología , Sirolimus/farmacología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Transcripción Genética/efectos de los fármacosRESUMEN
We examined 807 productive IGHV-IGHD-IGHJ gene rearrangements from mantle cell lymphoma (MCL) cases, by far the largest series to date. The IGHV gene repertoire was remarkably biased, with IGHV3-21, IGHV4-34, IGHV1-8, and IGHV3-23 accounting for 46.3% of the cohort. Eighty-four of 807 (10.4%) cases, mainly using the IGHV3-21 and IGHV4-34 genes, were found to bear stereotyped heavy complementarity-determining region 3 (VH CDR3) sequences and were placed in 38 clusters. Notably, the MCL stereotypes were distinct from those reported for chronic lymphocytic leukemia. Based on somatic hypermutation (SHM) status, 238/807 sequences (29.5%) carried IGHV genes with 100% germ line identity; the remainder (569/807; 70.5%) exhibited different SHM impact, ranging from minimal (in most cases) to pronounced. Shared replacement mutations across the IGHV gene were identified for certain subgroups, especially those using IGHV3-21, IGHV1-8, and IGHV3-23. Comparison with other entities, in particular CLL, revealed that several of these mutations were "MCL-biased." In conclusion, MCL is characterized by a highly restricted immunoglobulin gene repertoire with stereotyped VH CDR3s and very precise SHM targeting, strongly implying a role for antigen-driven selection of the clonogenic progenitors. Hence, an antigen-driven origin of MCL could be envisaged, at least for subsets of cases.