Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Mol Cell ; 31(4): 520-530, 2008 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-18722178

RESUMEN

Retinoblastoma protein (pRB) mediates cell-cycle withdrawal and differentiation by interacting with a variety of proteins. RB-Binding Protein 2 (RBP2) has been shown to be a key effector. We sought to determine transcriptional regulation by RBP2 genome-wide by using location analysis and gene expression profiling experiments. We describe that RBP2 shows high correlation with the presence of H3K4me3 and its target genes are separated into two functionally distinct classes: differentiation-independent and differentiation-dependent genes. The former class is enriched by genes that encode mitochondrial proteins, while the latter is represented by cell-cycle genes. We demonstrate the role of RBP2 in mitochondrial biogenesis, which involves regulation of H3K4me3-modified nucleosomes. Analysis of expression changes upon RBP2 depletion depicted genes with a signature of differentiation control, analogous to the changes seen upon reintroduction of pRB. We conclude that, during differentiation, RBP2 exerts inhibitory effects on multiple genes through direct interaction with their promoters.


Asunto(s)
Diferenciación Celular/genética , Genoma Humano/genética , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisina/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo , Sitios de Unión , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genómica , Humanos , Metilación , Mitocondrias/enzimología , Modelos Biológicos , Nucleosomas/enzimología , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas Represoras/metabolismo , Proteína 2 de Unión a Retinoblastoma , Análisis de Secuencia de ADN , Factores de Transcripción/metabolismo
2.
Proc Natl Acad Sci U S A ; 103(15): 5899-904, 2006 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-16595631

RESUMEN

The NF-kappaB family of transcription factors plays a critical role in numerous cellular processes, particularly the immune response. Our understanding of how the different NF-kappaB subunits act coordinately to regulate gene expression is based on a limited set of genes. We used genome-scale location analysis to identify targets of all five NF-kappaB proteins before and after stimulation of monocytic cells with bacterial lipopolysaccharide (LPS). In unstimulated cells, p50 and p52 bound to a large number of gene promoters that were also occupied by RNA polymerase II. After LPS stimulation, additional NF-kappaB subunits bound to these genes and to other genes. Genes that became bound by multiple NF-kappaB subunits were the most likely to show increases in RNA polymerase II occupancy and gene expression. This study identifies NF-kappaB target genes, reveals how the different NF-kappaB proteins coordinate their activity, and provides an initial map of the transcriptional regulatory network that underlies the host response to infection.


Asunto(s)
Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Genoma Humano , Humanos , FN-kappa B/efectos de los fármacos , Unión Proteica , Subunidades de Proteína/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transcripción Genética/efectos de los fármacos , Células U937
3.
Cell ; 125(2): 301-13, 2006 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-16630818

RESUMEN

Polycomb group proteins are essential for early development in metazoans, but their contributions to human development are not well understood. We have mapped the Polycomb Repressive Complex 2 (PRC2) subunit SUZ12 across the entire nonrepeat portion of the genome in human embryonic stem (ES) cells. We found that SUZ12 is distributed across large portions of over two hundred genes encoding key developmental regulators. These genes are occupied by nucleosomes trimethylated at histone H3K27, are transcriptionally repressed, and contain some of the most highly conserved noncoding elements in the genome. We found that PRC2 target genes are preferentially activated during ES cell differentiation and that the ES cell regulators OCT4, SOX2, and NANOG cooccupy a significant subset of these genes. These results indicate that PRC2 occupies a special set of developmental genes in ES cells that must be repressed to maintain pluripotency and that are poised for activation during ES cell differentiation.


Asunto(s)
Proteínas Portadoras/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Madre/fisiología , Animales , Proteínas Portadoras/genética , Células Cultivadas , Perfilación de la Expresión Génica , Humanos , Complejos Multiproteicos , Proteínas de Neoplasias , Proteínas Nucleares , Análisis de Secuencia por Matrices de Oligonucleótidos , Complejo Represivo Polycomb 2 , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transducción de Señal/fisiología , Células Madre/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
4.
Mol Cell ; 18(6): 623-35, 2005 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-15949438

RESUMEN

pRB can enforce a G1 block by repressing E2F-responsive promoters. It also coactivates certain non-E2F transcription factors and promotes differentiation. Some pRB variants activate transcription and promote differentiation despite impaired E2F binding and transcriptional repression capabilities. We identified RBP2 in a screen for proteins that bind to such pRB variants. RBP2 resembles other chromatin-associated transcriptional regulators and RBP2 binding tracked with pRB's ability to activate transcription and promote differentiation. RBP2 and pRB colocalize and pRB/RBP2 complexes were detected in chromatin isolated from differentiating cells. RBP2 siRNA phenocopied restoration of pRB function in coactivation and differentiation assays, suggesting that pRB prevents RBP2 from repressing genes required for differentiation. In addition, two bromodomain-containing proteins were identified as RBP2 targets that are transcriptionally activated by pRB in an RBP2-dependent manner. Our results suggest that promotion of differentiation by pRB involves neutralization of free RBP2 and transcriptional activation of RBP2 targets linked to euchromatin maintenance.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas/metabolismo , Proteína de Retinoblastoma/metabolismo , Animales , Secuencia de Bases , Células Cultivadas , Cromatina/metabolismo , Cartilla de ADN , Fibroblastos/fisiología , Humanos , Ratones , Ratones Noqueados , Plásmidos , ARN Interferente Pequeño/genética , Proteína de Retinoblastoma/deficiencia , Proteína de Retinoblastoma/genética , Proteína p130 Similar a la del Retinoblastoma , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/metabolismo , Transfección
5.
Cell ; 122(6): 947-56, 2005 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-16153702

RESUMEN

The transcription factors OCT4, SOX2, and NANOG have essential roles in early development and are required for the propagation of undifferentiated embryonic stem (ES) cells in culture. To gain insights into transcriptional regulation of human ES cells, we have identified OCT4, SOX2, and NANOG target genes using genome-scale location analysis. We found, surprisingly, that OCT4, SOX2, and NANOG co-occupy a substantial portion of their target genes. These target genes frequently encode transcription factors, many of which are developmentally important homeodomain proteins. Our data also indicate that OCT4, SOX2, and NANOG collaborate to form regulatory circuitry consisting of autoregulatory and feedforward loops. These results provide new insights into the transcriptional regulation of stem cells and reveal how OCT4, SOX2, and NANOG contribute to pluripotency and self-renewal.


Asunto(s)
Trasplante de Células/fisiología , Embrión de Mamíferos/citología , Regulación del Desarrollo de la Expresión Génica/fisiología , Genes Reguladores/fisiología , Células Madre/fisiología , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Genes Reguladores/genética , Proteínas HMGB/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Regiones Promotoras Genéticas , Unión Proteica , Factores de Transcripción SOXB1 , Transducción de Señal/fisiología , Células Madre/citología , Factores de Transcripción/metabolismo
6.
Science ; 303(5662): 1378-81, 2004 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-14988562

RESUMEN

The transcriptional regulatory networks that specify and maintain human tissue diversity are largely uncharted. To gain insight into this circuitry, we used chromatin immunoprecipitation combined with promoter microarrays to identify systematically the genes occupied by the transcriptional regulators HNF1alpha, HNF4alpha, and HNF6, together with RNA polymerase II, in human liver and pancreatic islets. We identified tissue-specific regulatory circuits formed by HNF1alpha, HNF4alpha, and HNF6 with other transcription factors, revealing how these factors function as master regulators of hepatocyte and islet transcription. Our results suggest how misregulation of HNF4alpha can contribute to type 2 diabetes.


Asunto(s)
Proteínas de Unión al ADN , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Proteínas de Homeodominio/metabolismo , Islotes Pancreáticos/metabolismo , Proteínas Nucleares , Fosfoproteínas/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Metabolismo de los Hidratos de Carbono , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/genética , Perfilación de la Expresión Génica , Genoma Humano , Gluconeogénesis , Factor Nuclear 1 del Hepatocito , Factor Nuclear 1-alfa del Hepatocito , Factor Nuclear 1-beta del Hepatocito , Factor Nuclear 4 del Hepatocito , Factor Nuclear 6 del Hepatocito , Humanos , Metabolismo de los Lípidos , Análisis de Secuencia por Matrices de Oligonucleótidos , Pruebas de Precipitina , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Transcripción Genética
7.
Science ; 298(5594): 799-804, 2002 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-12399584

RESUMEN

We have determined how most of the transcriptional regulators encoded in the eukaryote Saccharomyces cerevisiae associate with genes across the genome in living cells. Just as maps of metabolic networks describe the potential pathways that may be used by a cell to accomplish metabolic processes, this network of regulator-gene interactions describes potential pathways yeast cells can use to regulate global gene expression programs. We use this information to identify network motifs, the simplest units of network architecture, and demonstrate that an automated process can use motifs to assemble a transcriptional regulatory network structure. Our results reveal that eukaryotic cellular functions are highly connected through networks of transcriptional regulators that regulate other transcriptional regulators.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Algoritmos , Ciclo Celular , Biología Computacional , ADN de Hongos/genética , ADN de Hongos/metabolismo , Retroalimentación Fisiológica , Perfilación de la Expresión Génica , Genoma Fúngico , Modelos Genéticos , Unión Proteica , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA