RESUMEN
The etiology of hair loss remains enigmatic, and current remedies remain inadequate. Transcriptome analysis of aging hair follicles uncovered changes in immune pathways, including Toll-like receptors (TLRs). Our findings demonstrate that the maintenance of hair follicle homeostasis and the regeneration capacity after damage depends on TLR2 in hair follicle stem cells (HFSCs). In healthy hair follicles, TLR2 is expressed in a cycle-dependent manner and governs HFSCs activation by countering inhibitory BMP signaling. Hair follicles in aging and obesity exhibit a decrease in both TLR2 and its endogenous ligand carboxyethylpyrrole (CEP), a metabolite of polyunsaturated fatty acids. Administration of CEP stimulates hair regeneration through a TLR2-dependent mechanism. These results establish a novel connection between TLR2-mediated innate immunity and HFSC activation, which is pivotal to hair follicle health and the prevention of hair loss and provide new avenues for therapeutic intervention.
RESUMEN
Toll-like receptor 2 (TLR2) is implicated in various pathologies, mainly in terms of its function within innate immune cells. However, TLR2 is also present in endothelial cells. Here, we explored the physiological and pathophysiological roles of endothelial TLR2 signaling. We found that TLR2 was highly abundant in the endothelium within various tissues using TLR2-IRES-EGFP reporter mice and was required for proinflammatory endothelial cell function. Endothelial cells lacking TLR2 exhibited reduced proinflammatory potential at the protein, cell, and tissue levels. Loss of endothelial TLR2 blunted the inflammatory response to both exogenous and endogenous danger signals in endothelial cells in culture and in vivo. Endothelial TLR2 promoted tumor growth, angiogenesis, and protumorigenic immune cell recruitment in a mouse model of prostate cancer. Furthermore, the cell surface localization of P-selectin and the subsequent production of other critical cell adhesion molecules (such as E-selectin, ICAM-1 and VCAM-1) that recruit immune cells required endothelial TLR2. Our findings demonstrate that endothelial cells actively contribute to innate immune pathways and propose that endothelial TLR2 has a pathological role in proinflammatory conditions.