Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Angew Chem Int Ed Engl ; : e202411635, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963679

RESUMEN

Over the years, polynuclear cyclic or torus complexes have attracted increasing interest due to their unique metal topologies and properties. However, the isolation of polynuclear cyclic organometallic complexes is extremely challenging due to their inherent reactivity, which stems from the labile and reactive metal-carbon bonds. In this study, the pyrazine ligand undergoes a radical-radical cross-coupling reaction leading to the formation of a decanuclear [(Cp*)20Dy10(L1)10]·12(C7H8) (1; where L1 = anion of 2-prop-2-enyl-2H-pyrazine) complex, where all DyIII metal centers are bridged by the anionic L1 ligand. Amongst the family of polynuclear Ln organometallic complexes bearing CpR2Lnx units, 1 features the highest nuclearity obtained to date. In-depth computational studies were conducted to elucidate the proposed reaction mechanism and formation of L1, while probing of the magnetic properties of 1, revealed slow magnetic relaxation upon application of a static dc field.

2.
Angew Chem Int Ed Engl ; 62(40): e202309152, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37595074

RESUMEN

Remote temperature probing at the cryogenic range is of utmost importance for the advancement of future quantum technologies. Despite the notable achievements in luminescent thermometers, accurately measuring temperatures below 10 K remains a challenging endeavor. In this study, we propose a novel magneto-optical thermometric approach based on the magnetic-circular dichroism (MCD) technique, which offers unprecedented capabilities for meticulous temperature variation analysis at cryogenic temperatures. The inherent temperature sensitivity of the MCD C-term, in conjunction with both positive and negative signals, enables highly sensitive magneto-optical temperature probing. Additionally, a groundbreaking relative thermal sensitivity value of 95.3 % K-1 at 2.54 K can be achieved using a mononuclear lanthanide complex, [[Ho(acac)3 (phen)], in the presence of a 0.25 T applied magnetic field and using a combination of multiparametric thermal read-out with multiple regression. These results unequivocally demonstrate the viability and effectiveness of our methodology for cryogenic temperature sensing.

3.
Angew Chem Int Ed Engl ; 62(49): e202313880, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37871234

RESUMEN

Atomically defined large metal clusters have applications in new reaction development and preparation of materials with tailored properties. Expanding the synthetic toolbox for reactive high nuclearity metal complexes, we report a new class of Fe clusters, Tp*4 W4 Fe13 S12 , displaying a Fe13 core with M-M bonds that has precedent only in main group and late metal chemistry. M13 clusters with closed shell electron configurations can show significant stability and have been classified as superatoms. In contrast, Tp*4 W4 Fe13 S12 displays a large spin ground state of S=13. This compound performs small molecule activations involving the transfer of up to 12 electrons resulting in significant cluster rearrangements.

4.
J Am Chem Soc ; 144(2): 912-921, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34989573

RESUMEN

Lanthanide-based luminescent materials have unique properties and are well-studied for many potential applications. In particular, the characteristic 5d → 4f emission of divalent lanthanide ions such as EuII allows for tunability of the emissive properties via modulation of the coordination environment. We report the synthesis and photoluminescence investigation of pentamethylcyclopentadienyleuropium(II) tetrahydroborate bis(tetrahydrofuran) dimer (1), the first example of an organometallic, discrete molecular EuII band-shift luminescence thermometer. Complex 1 exhibits an absolute sensitivity of 8.2 cm-1 K-1 at 320 K, the highest thus far observed for a lanthanide-based band-shift thermometer. Opto-structural correlation via variable-temperature single-crystal X-ray diffraction and fluorescence spectroscopy allows rationalization of the remarkable thermometric luminescence of complex 1 and reveals the significant potential of molecular EuII compounds in luminescence thermometry.

5.
J Am Chem Soc ; 144(39): 17955-17965, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36154166

RESUMEN

We herein report the synthesis and magnetic properties of a Ni(II)-porphyrin tethered to an imidazole ligand through a flexible electron-responsive mechanical hinge. The latter is capable of undergoing a large amplitude and fully reversible folding motion under the effect of electrical stimulation. This redox-triggered movement is exploited to force the axial coordination of the appended imidazole ligand onto the square-planar Ni(II) center, resulting in a change in its spin state from low spin (S = 0) to high spin (S = 1) proceeding with an 80% switching efficiency. The driving force of this reversible folding motion is the π-dimerization between two electrogenerated viologen cation radicals. The folding motion and the associated spin state switching are demonstrated on the grounds of NMR, (spectro)electrochemical, and magnetic data supported by quantum calculations.


Asunto(s)
Níquel , Porfirinas , Estimulación Eléctrica , Imidazoles , Ligandos , Níquel/química , Viológenos
6.
Inorg Chem ; 61(42): 16856-16873, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36219252

RESUMEN

Reduction of the diamagnetic Ti(III)/Ti(III) dimer [Cl2Ti(µ-NImDipp)]2 (1) (NImDipp = [1,3-bis(Dipp)imidazolin-2-iminato]-, Dipp = C6H3-2,6-iPr2) with 4 and 6 equiv of KC8 generates the intramolecularly arene-masked, dinuclear titanium compounds [(µ-N-η6-ImDipp)Ti]2 (2) and {[(Et2O)2K](µ-N-µ-η6:η6-ImDipp)Ti}2 (3), respectively, in modest yields. The compounds have been structurally characterized by X-ray crystallographic analysis, and inspection of the bond metrics within the η6-coordinated aryl substituent of the bridging imidazolin-2-iminato ligand shows perturbation of the aromatic system most consistent with two-electron reduction of the ring. As such, 2 and 3 can be assigned respectively as possessing metal centers in formal Ti(III)/Ti(III) and Ti(II)/Ti(II) oxidation states. Exploration of their redox chemistry reveal the ability to reduce several substrate equivalents. For instance, treatment of 2 with excess C8H8 (COT) forms the novel COT-bridged complex [(ImDippN)(η8-COT)Ti](µ-η2:η3-COT)[Ti(η4-COT)(NImDipp)] (4) that dissociates in THF solutions to give mononuclear (ImDippN)Ti(η8-COT)(THF) (5). Addition of COT to 3 yields heterometallic [(ImDippN)(η4-COT)Ti(µ-η4:η5-COT)K(THF)(µ-η6:η4-COT)Ti(NImDipp)(µ-η4:η4-COT)K(THF)2]n (6). Compounds 4 and 5 are the products of the 4-electron oxidation of 2, while 6 stands as the 8-electron oxidation product of 3. Reduction of organozides was also explored. Low temperature reaction of 2 with 4 equiv of AdN3 gives the terminal and bridged imido complex [(ImDippN)Ti(═NAd)](µ-NAd)2[Ti(NImDipp)(N3Ad)] (7) that undergoes intermolecular C-H activation of toluene at room temperature to afford the amido compound [(ImDippN)Ti(NHAd)](µ-NAd)2[Ti(C6H4Me)(NImDipp)] (8-tol). These complexes are the 6-electron oxidation products of the reaction of 2 with AdN3. Furthermore, treatment of 3 with 4 equiv of AdN3 produces the thermally stable Ti(III)/Ti(III) terminal and bridged imido [K(18-crown-6)(THF)2]{[(ImDippN)Ti(NAd)](µ-NAd)2K[Ti(NImDipp)]} (10). Altogether, these reactions firmly establish 2 and 3 as unprecedented Ti(I)/Ti(I) and Ti(0)/Ti(0) synthons with the clear capacity to effect multielectron reductions ranging from 4 to 8 electrons.

7.
Inorg Chem ; 61(3): 1611-1619, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-34990145

RESUMEN

An isostructural set of macrocyclic tetra-N-heterocyclic carbene (NHC) complexes were synthesized on late lanthanides including Lu, Yb, Ho, Dy, and Gd. They were characterized by single-crystal X-ray diffraction, multinuclear NMR, electrochemistry, and SQUID magnetometry. Solid-state structures show that all complexes are in a highly distorted square-pyramidal geometry with an axial HMDS ligand. 1H NMR for Lu, Yb, and Dy demonstrates that these geometries are maintained in solution. Electrochemical measurements on the Yb complex show that the NHCs are very strong σ-donors compared to other organometallic Yb complexes. Magnetic measurements of the Yb and Dy complexes reveal slow relaxation of the magnetization in both complexes. The highly anisotropic Dy complex possesses an energy barrier to spin reversal of 52.42 K/36.43 cm-1 and waist-restricted hysteresis up to 2.8 K. Finally, an 18-atom macrocycle variant of the Lu complex was synthesized for comparison in reactivity and stability. These complexes are the first lanthanides prepared with macrocyclic NHCs and suggest that NHCs may be a promising ligand for developing single-molecule magnets.

8.
Inorg Chem ; 61(30): 11695-11701, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35854222

RESUMEN

The archetypal metal-organic framework-5 (MOF-5 or IRMOF-1) has been explored as a benchmark sorbent material with untapped potential to be studied in the capture and storage of gases and chemical confinement. Several derivatives of this framework have been prepared using the multivariate (MTV) strategy through mixing size-matching linkers to isolate, for example, MIXMOFs that outperform same-linker congeners when employed as gas reservoirs. Herein, we describe a straightforward protocol that uses mechanosynthesis (solvent-free grinding) followed by mild activation in dimethylformamide (DMF)/CHCl3 (40 °C and ambient pressure) to synthesize a functional phase-pure interpenetrated MOF-5 (int-MOF-5) bearing the size-matching 1,4-benzene dicarboxylate (BDC) and 1,2,4,5-tetrazine-3,6-dicarboxylate (TZDC) linkers in the backbone of the interpenetrated MIXMOF. We found that the grinding involving a mixture of H2TZDC and H2BDC in a 1:4 ratio (20% of H2TZDC) in the presence of zinc(II) acetate yields a crystalline solid that upon activation forms a phase-pure int-MOF-5 herein referred to as 20%TZDC-MOF-5. The crystalline phase, thermal stability, and porous structure of 20%TZDC-MOF-5 were thoroughly characterized, and the gas adsorption performance of the MIXMOF was investigated through the isotherms of N2 and H2 at 77 K and CO2 at 273 and 296 K. The pore size distribution for 20%TZDC-MOF-5 was found to be very similar to that determined using single crystals of the same-linker int-MOF-5. The presence of TZDC in the MIXMOF led to a slight increase in the uptake values for both H2 and CO2, suggesting that beneficial interactions take place. To the best of our knowledge, this is the first report presenting a suitable protocol to yield a functionalized int-MOF-5 as a promising means of synergistically fine-tuning the confinement of small target molecules such as CO2 and H2.

9.
Inorg Chem ; 61(3): 1308-1315, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35005902

RESUMEN

We report a new series of homoleptic Ni(I) bis-N-heterocyclic carbene complexes with a range of torsion angles between the two ligands from 68° to 90°. Electron paramagnetic resonance measurements revealed a strongly anisotropic g-tensor in all complexes with a small variation in g∥ ∼ 5.7-5.9 and g⊥ ∼ 0.6. The energy of the first excited state identified by variable-field far-infrared magnetic spectroscopy and SOC-CASSCF/NEVPT2 calculations is in the range 270-650 cm-1. Magnetic relaxation measured by alternating current susceptibility up to 10 K is dominated by Raman and direct processes. Ab initio ligand-field analysis reveals that a torsion angle of <90° causes the splitting between doubly occupied dxz and dyz orbitals, which has little effect on the magnetic properties, while the temperature dependence of the magnetic relaxation appears to have no correlation with the torsion angle.

10.
Angew Chem Int Ed Engl ; 61(29): e202204839, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35561123

RESUMEN

Photon upconversion (UC) in molecular species remains a highly sought-after property with vast potential applications in many fields. Until now, a few reports on molecular upconverters are limited to demonstrating upconversion. The low UC quantum yields (QY) and nuclearities hindered the application capabilities for molecular upconverters. To overcome these limitations, we report the use of a molecular cluster-aggregate (MCA) containing 20 lanthanide ions to target YbIII -TbIII -based cooperative UC. Upconversion quantum yield value of 1.04×10-4 %, among the highest value observed for a molecular cooperative UC, was attained for the {Gd11 Tb2 Yb7 } composition. Substitution of GdIII ions for EuIII centers opens a YbIII →TbIII →EuIII energy-transfer pathway, allowing the first proof-of-concept of potential application for molecular UC. This report on upconversion-based luminescence thermometry in a molecular species endorses further development of upconversion properties of nanoscale MCAs.


Asunto(s)
Elementos de la Serie de los Lantanoides , Termometría , Transferencia de Energía , Luminiscencia
11.
Chemistry ; 27(16): 5091-5106, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33079452

RESUMEN

Although 1,2,4,5-tetrazines or s-tetrazines have been known in the literature for more than a century, their coordination chemistry has become increasingly popular in recent years due to their unique redox activity, multiple binding sites and their various applications. The electron-poor character of the ring and stabilization of the radical anion through all four nitrogen atoms in their metal complexes provide new aspects in molecular magnetism towards the synthesis of new high performing Single Molecule Magnets (SMMs). The scope of this review is to examine the role of s-tetrazine radical ligands in transition metal and lanthanide based SMMs and provide a critical overview of the progress thus far in this field. As well, general synthetic routes and new insights for the preparation of s-tetrazines are discussed, along with their redox activity and applications in various fields. Concluding remarks along with the limitations and perspectives of these ligands are discussed.

12.
Chemistry ; 27(7): 2361-2370, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32926489

RESUMEN

We report the formation of a tetranuclear lanthanide cluster, [Yb4 (bpzch)2 (fod)10 ] (1), which occurs from a serendipitous ring opening of the functionalised tetrazine bridging ligand, bpztz (3,6-dipyrazin-2-yl-1,2,4,5-tetrazine) upon reacting with Yb(fod)3 (fod- =6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octandionate). Compound 1 was structurally elucidated via single-crystal X-ray crystallography and subsequently magnetically and spectroscopically characterised to analyse its magnetisation dynamics and its luminescence behaviour. Computational studies validate the observed MJ energy levels attained by spectroscopy and provides a clearer picture of the slow relaxation of the magnetisation dynamics and relaxation pathways. These studies demonstrate that 1 acts as a single-molecule magnet (SMM) under an applied magnetic field in which the relaxation occurs via a combination of Raman, direct, and quantum tunnelling processes, a behaviour further rationalised analysing the luminescent properties. This marks the first lanthanide-containing molecule that forms by means of an asymmetric tetrazine decomposition.

13.
Angew Chem Int Ed Engl ; 60(4): 1728-1746, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-31596534

RESUMEN

Single-molecule magnets (SMMs) are at the forefront of new technological advances in quantum information processing and spintronics. Despite the recent impressive breakthroughs in extending the magnetic blocking temperatures beyond liquid-nitrogen temperatures, significant challenges await in terms of integrating and addressing such compounds in devices. With this ultimate goal in mind, the design of multifunctional SMMs not only allows to imbue molecules of interest with specific properties that would allow for in situ monitoring of the SMM operation in real time, but can also provide critical insights into our understanding of the magnetic behaviour. In this Review, we highlight how magnetism and luminescence can be harmoniously combined within single molecules to achieve these objectives. The key design principles to attain the simultaneous combination of photoluminescence and slow relaxation of the magnetization are discussed, along with an outlook on how such molecules could be beneficial for emerging next-generation spintronics devices.

14.
Angew Chem Int Ed Engl ; 60(45): 24206-24213, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34427984

RESUMEN

Inducing magnetic coupling between 4f elements is an ongoing challenge. To overcome this formidable difficulty, we incorporate highly delocalized tetrazinyl radicals, which strongly couple with f-block metallocenes to form discrete tetranuclear complexes. Synthesis, structure, and magnetic properties of two tetranuclear [(Cp*2 Ln)4 (tz. )4 ]⋅3(C6 H6 ) (Cp*=pentamethylcyclopentadienyl; tz=1,2,4,5-tetrazine; Ln=Dy, Gd) complexes are reported. An in-depth examination of their magnetic properties through magnetic susceptibility measurements as well as computational studies support a highly sought-after radical-induced "giant-spin" model. Strong exchange interactions between the LnIII ions and tz. radicals lead to a strong magnet-like behaviour in this molecular magnet with a large coercive field of 30 kOe.

15.
Angew Chem Int Ed Engl ; 60(11): 6130-6136, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33296546

RESUMEN

Counterfeit goods represent a major problem to companies, governments, and customers, affecting the global economy. In order to protect the authenticity of products and documents, optical anti-counterfeit technologies have widely been employed via the use of discrete molecular species, extended metal-organic frameworks (MOFs), and nanoparticles. Herein, for the first time we demonstrate the potential use of molecular cluster-aggregates (MCA) as optical barcodes via composition and energy transfer control. The tuneable optical properties for the [Ln20 (chp)30 (CO3 )12 (NO3 )6 (H2 O)6 ], where chp- =deprotonated 6-chloro-2-pyridinol, allow the fine control of the emission colour output, resulting in high-security level optical labelling with a precise read-out. Moreover, a unique tri-doped composition of GdIII , TbIII , and EuIII led to MCAs with white-light emission. The presented methodology is a unique approach to probe the effect of composition control on the luminescent properties of nanosized molecular material.

16.
Chemistry ; 26(69): 16455-16462, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-32762122

RESUMEN

Donor-acceptor interactions are ubiquitous in the design and understanding of host-guest complexes. Despite their non-covalent nature, they can readily dictate the self-assembly of complex architectures. Here, a photo-/redox-switchable metal-organic nanocapsule is presented, which was assembled by using lanthanide ions and viologen building blocks, by relying on such donor-acceptor interactions. The potential of this unique barrel-shaped structure is highlighted for the encapsulation of suitable electron donors, akin to the well-investigated "blue-box" macrocycles. The light-triggered reduction of the viologen units has been investigated by single-crystal-to-single-crystal X-ray diffraction experiments, complemented by magnetic, optical, and solid-state electrochemical characterizations. Density functional theory (DFT) calculations were employed to suggest the most likely electron donor in the light-triggered reduction of the viologen-based ligand.

17.
Inorg Chem ; 59(15): 11061-11070, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32678587

RESUMEN

Amidine-based ligand frameworks were employed to isolate a series of mononuclear lanthanide complexes. The employed N-2-pyridylimidoyl-2-pyridylamidine (Py2ImAm) undergoes metal-assisted hydrolysis yielding the ligand 2-amidinopyridine (PyAm), which coordinates to the lanthanide ions affording [Ln(acac)3(PyAm)], where Ln = Eu(III) (1), Gd(III) (2), Tb(III) (3), Dy(III) (4) along with the Y(III) analogue (5). The Eu(III), Tb(III), and Dy(III) congeners exhibit characteristic emissions of red, green, and yellow light, respectively, with emission quantum yields of 3, 65, and 8%, respectively. Due to changes in the thermal population of the Stark sublevels, the Tb(III) and Dy(III) complexes can be used as efficient optical thermometers with maximum relative sensitivities of 1.57 and 2.03% K-1 for 3 and 4, respectively. These results demonstrate the viability of PyAm as an antenna for the sensitization of lanthanide ions.

18.
Angew Chem Int Ed Engl ; 59(31): 13109-13115, 2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32329111

RESUMEN

The π coordination of arene and anionic heteroarene ligands is a ubiquitous bonding motif in the organometallic chemistry of d-block and f-block elements. By contrast, related π interactions of neutral heteroarenes including neutral bora-π-aromatics are less prevalent particularly for the f-block, due to less effective metal-to-ligand backbonding. In fact, π complexes with neutral heteroarene ligands are essentially unknown for the actinides. We have now overcome these limitations by exploiting the exceptionally strong π donor capabilities of a neutral 1,4-diborabenzene. A series of remarkably robust, π-coordinated thorium(IV) and uranium(IV) half-sandwich complexes were synthesized by simply combining the bora-π-aromatic with ThCl4 (dme)2 or UCl4 , representing the first examples of actinide complexes with a neutral boracycle as sandwich-type ligand. Experimental and computational studies showed that the strong actinide-heteroarene interactions are predominately electrostatic in nature with distinct ligand-to-metal π donation and without significant π/δ backbonding contributions.

19.
Chemistry ; 25(64): 14625-14637, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31448479

RESUMEN

Lanthanide-complex-based luminescence thermometry and single-molecule magnetism are two effervescent fields of research, owing to the great promise they hold from an application standpoint. The high thermal sensitivity achievable, their contactless nature, along with sub-micrometric spatial resolution make these luminescent thermometers appealing for accurate temperature probing in miniaturised electronics. To that end, single-molecule magnets (SMMs) are expected to revolutionise the field of spintronics, thanks to the improvements made in terms of their working temperature-now surpassing that of liquid nitrogen-and manipulation of their spin state. Hence, the combination of such opto-magnetic properties in a single molecule is desirable in the aim of overcoming, among others, addressability issues. Yet, improvements must be made through design strategies for the realisation of the aforementioned goal. Moving forward from these considerations, we present a thorough investigation of the effect that changes in the ligand scaffold of a family of terbium complexes have on their performance as luminescent thermometers and SMMs. In particular, an increased number of electron-withdrawing groups yields modifications of the metal coordination environment and a lowering of the triplet state of the ligands. These effects are tightly intertwined, thus, resulting in concomitant variations of the SMM and the luminescence thermometry behaviour of the complexes. Supported by ab initio calculations, we can rationally interpret the observed trends and provide solid foundations for the development of opto-magnetic lanthanide complexes.

20.
Chemistry ; 24(40): 10146-10155, 2018 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-29665186

RESUMEN

Two homodinuclear and one heterodinuclear lanthanide (Ln)-based complexes of the general formula [Ln2 (bpm)(tfaa)6 ] (Ln=Eu (1), Tb (2), Eu-Tb (3), bpm=2,2'-bipyrimidine, tfaa- =1,1,1-trifluoroacetylacetonate) were synthesized and characterized by single-crystal photoluminescence spectroscopy and hyperspectral imaging. Complexes 1 and 2 crystallize in two polymorphic structures, while three polymorphs were isolated for 3, namely having needle-, plate-, and block-like morphologies. Single-crystal photoluminescence spectroscopy and imaging on Eu3+ -containing 1 and 3 revealed polymorph-dependent J-splitting of the hypersensitive 5 D0 →7 F2 Eu3+ transition as well as electric-to-magnetic dipole emission intensity ratios. According to these observations, the lowest symmetry chemical environment was attributed to the Eu3+ ions present in the needle-like polymorph, also in agreement with single-crystal X-ray diffraction analysis. More importantly, hyperspectral imaging on all three single-crystal polymorphs of 3 exhibits optical anisotropy with photoluminescence enhancement at specific crystallographic faces. This behavior was ascribed to the distinct molecular packing of the Ln-Ln dimers in each polymorphic crystal as well as to face-specific local symmetry of the Eu3+ centers. Overall, opto-structural relationships of three Ln-Ln dimers and their single-crystal polymorphs were established as a particularly promising avenue for control of photoluminescence by chemical crystal engineering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA