Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ann Rheum Dis ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902010

RESUMEN

OBJECTIVES: Autoantibodies targeting intracellular proteins are common in various autoimmune diseases. In the context of myositis, the pathologic significance of these autoantibodies has been questioned due to the assumption that autoantibodies cannot enter living muscle cells. This study aims to investigate the validity of this assumption. METHODS: Confocal immunofluorescence microscopy was employed to localise antibodies and other proteins of interest in myositis muscle biopsies. Bulk RNA sequencing was used to examine the transcriptomic profiles of 669 samples, including those from patients with myositis, disease controls and healthy controls. Additionally, antibodies from myositis patients were introduced into cultured myoblasts through electroporation, and their transcriptomic profiles were analysed using RNA sequencing. RESULTS: In patients with myositis autoantibodies, antibodies accumulated inside myofibres in the same subcellular compartment as the autoantigen. Bulk RNA sequencing revealed that muscle biopsies from patients with autoantibodies targeting transcriptional regulators exhibited transcriptomic patterns consistent with dysfunction of the autoantigen. For instance, in muscle biopsies from patients with anti-PM/Scl autoantibodies recognising components of the nuclear RNA exosome complex, an accumulation of divergent transcripts and long non-coding RNAs was observed; these RNA forms are typically degraded by the nuclear RNA exosome complex. Introducing patient antibodies into cultured muscle cells recapitulated the transcriptomic effects observed in human disease. Further supporting evidence suggested that myositis autoantibodies recognising other autoantigens may also disrupt the function of their targets. CONCLUSIONS: This study demonstrates that, in myositis, autoantibodies are internalised into living cells, causing biological effects consistent with the disrupted function of their autoantigen.

2.
Front Lupus ; 22024.
Artículo en Inglés | MEDLINE | ID: mdl-38707772

RESUMEN

Background/Purpose: Cutaneous lupus erythematosus (CLE) affects up to 70% of patients with systemic lupus erythematosus (SLE), and type I interferons (IFNs) are important promoters of SLE and CLE. Our previous work identified IFN-kappa (IFN-κ), a keratinocyte-produced type I IFN, as upregulated in non-lesional and lesional lupus skin and as a critical regulator for enhanced UVB-mediated cell death in SLE keratinocytes. Importantly, the molecular mechanisms governing regulation of IFN-κ expression have been relatively unexplored. Thus, this study sought to identify critical regulators of IFN-κ and identified a novel role for IFN-beta (IFN-ß). Methods: Human N/TERT keratinocytes were treated with the RNA mimic poly (I:C) or 50 mJ/cm2 ultraviolet B (UVB), followed by mRNA expression quantification by RT-qPCR in the presence or absence neutralizing antibody to the type I IFN receptor (IFNAR). IFNB and STAT1 knockout (KO) keratinocytes were generated using CRISPR/Cas9. Results: Time courses of poly(I:C) and UVB treatment revealed a differential expression of IFNB, which was upregulated between 3-6 hours and IFNK, which was upregulated 24 hours after stimulation. Intriguingly, only IFNK expression was substantially abrogated by neutralizing antibodies to IFNAR, suggesting that IFNK upregulation required type I IFN signaling for induction. Indeed, deletion of IFNB abrogated IFNK expression. Further exploration confirmed a role for type I IFN-triggered STAT1 activation. Conclusion: Collectively, our work describes a novel mechanistic paradigm in keratinocytes in which initial IFN-κ induction in response to poly(I:C) and UVB is IFNß1-dependent, thus describing IFNK as both an IFN gene and an interferon-stimulated gene.

3.
medRxiv ; 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38313303

RESUMEN

Objectives: Myositis is a heterogeneous family of autoimmune muscle diseases. As myositis autoantibodies recognize intracellular proteins, their role in disease pathogenesis has been unclear. This study aimed to determine whether myositis autoantibodies reach their autoantigen targets within muscle cells and disrupt the normal function of these proteins. Methods: Confocal immunofluorescence microscopy was used to localize antibodies and other proteins of interest in myositis muscle biopsies. Bulk RNA sequencing was used to study the transcriptomic profiles of 668 samples from patients with myositis, disease controls, and healthy controls. Antibodies from myositis patients were introduced into cultured myoblasts by electroporation and the transcriptomic profiles of the treated myoblasts were studied by bulk RNA sequencing. Results: In patients with myositis autoantibodies, antibodies accumulated inside myofibers in the same subcellular compartment as the autoantigen. Each autoantibody was associated with effects consistent with dysfunction of its autoantigen, such as the derepression of genes normally repressed by Mi2/NuRD in patients with anti-Mi2 autoantibodies, the accumulation of RNAs degraded by the nuclear RNA exosome complex in patients with anti-PM/Scl autoantibodies targeting this complex, and the accumulation of lipids within myofibers of anti-HMGCR-positive patients. Internalization of patient immunoglobulin into cultured myoblasts recapitulated the transcriptomic phenotypes observed in human disease, including the derepression of Mi2/NuRD-regulated genes in anti-Mi2-positive dermatomyositis and the increased expression of genes normally degraded by the nuclear RNA exosome complex in anti-PM/Scl-positive myositis. Conclusions: In myositis, autoantibodies are internalized into muscle fibers, disrupt the biological function of their autoantigen, and mediate the pathophysiology of the disease.

4.
J Invest Dermatol ; 142(3 Pt B): 849-856, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34167786

RESUMEN

Aberrant responses to UV light frequently lead to the formation of skin lesions and the activation of systemic inflammation in some autoimmune diseases, especially systemic lupus erythematosus. Whereas the effects of UV light on the skin have been studied for decades, only recently have some of the mechanisms that contribute to abnormal responses to UV light in patients with autoimmune diseases been uncovered. This review will discuss the biology of UV in the epidermis and discuss the abnormal epidermal and inflammatory mechanisms that contribute to photosensitivity. Further research is required to fully understand how to normalize UV-mediated inflammation in patients with autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes , Lupus Eritematoso Sistémico , Trastornos por Fotosensibilidad , Enfermedades Autoinmunes/patología , Autoinmunidad , Humanos , Inflamación/patología , Trastornos por Fotosensibilidad/patología , Piel/patología , Rayos Ultravioleta/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA