Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(5): 790-808, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37071997

RESUMEN

SRSF1 (also known as ASF/SF2) is a non-small nuclear ribonucleoprotein (non-snRNP) that belongs to the arginine/serine (R/S) domain family. It recognizes and binds to mRNA, regulating both constitutive and alternative splicing. The complete loss of this proto-oncogene in mice is embryonically lethal. Through international data sharing, we identified 17 individuals (10 females and 7 males) with a neurodevelopmental disorder (NDD) with heterozygous germline SRSF1 variants, mostly de novo, including three frameshift variants, three nonsense variants, seven missense variants, and two microdeletions within region 17q22 encompassing SRSF1. Only in one family, the de novo origin could not be established. All individuals featured a recurrent phenotype including developmental delay and intellectual disability (DD/ID), hypotonia, neurobehavioral problems, with variable skeletal (66.7%) and cardiac (46%) anomalies. To investigate the functional consequences of SRSF1 variants, we performed in silico structural modeling, developed an in vivo splicing assay in Drosophila, and carried out episignature analysis in blood-derived DNA from affected individuals. We found that all loss-of-function and 5 out of 7 missense variants were pathogenic, leading to a loss of SRSF1 splicing activity in Drosophila, correlating with a detectable and specific DNA methylation episignature. In addition, our orthogonal in silico, in vivo, and epigenetics analyses enabled the separation of clearly pathogenic missense variants from those with uncertain significance. Overall, these results indicated that haploinsufficiency of SRSF1 is responsible for a syndromic NDD with ID due to a partial loss of SRSF1-mediated splicing activity.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Niño , Femenino , Masculino , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/complicaciones , Haploinsuficiencia/genética , Discapacidad Intelectual/patología , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Fenotipo , Humanos
2.
Genet Med ; 25(9): 100894, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37183800

RESUMEN

PURPOSE: The "NALCN channelosome" is an ion channel complex that consists of multiple proteins, including NALCN, UNC79, UNC80, and FAM155A. Only a small number of individuals with a neurodevelopmental syndrome have been reported with disease causing variants in NALCN and UNC80. However, no pathogenic UNC79 variants have been reported, and in vivo function of UNC79 in humans is largely unknown. METHODS: We used international gene-matching efforts to identify patients harboring ultrarare heterozygous loss-of-function UNC79 variants and no other putative responsible genes. We used genetic manipulations in Drosophila and mice to test potential causal relationships between UNC79 variants and the pathology. RESULTS: We found 6 unrelated and affected patients with UNC79 variants. Five patients presented with overlapping neurodevelopmental features, including mild to moderate intellectual disability and a mild developmental delay, whereas a single patient reportedly had normal cognitive and motor development but was diagnosed with epilepsy and autistic features. All displayed behavioral issues and 4 patients had epilepsy. Drosophila with UNC79 knocked down displayed induced seizure-like phenotype. Mice with a heterozygous loss-of-function variant have a developmental delay in body weight compared with wild type. In addition, they have impaired ability in learning and memory. CONCLUSION: Our results demonstrate that heterozygous loss-of-function UNC79 variants are associated with neurologic pathologies.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Proteínas de la Membrana , Trastornos del Neurodesarrollo , Animales , Humanos , Ratones , Drosophila/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Trastornos del Neurodesarrollo/genética , Fenotipo , Proteínas de la Membrana/genética
3.
Am J Med Genet A ; 188(9): 2652-2665, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35670379

RESUMEN

Biallelic mutations in the TTC5 gene have been associated with autosomal recessive intellectual disability (ARID) and subsequently with an ID syndrome including severe speech impairment, cerebral atrophy, and hypotonia as clinical cornerstones. A TTC5 role in IDs has been proposed based on the physical interaction of TTC5 with p300, and possibly reducing p300 co-activator complex activity, similarly to what was observed in Menke-Hennekam 1 and 2 patients (MKHK1 and 2) carrying, respectively, mutations in exon 30 and 31 of CREBBP and EP300, which code for the TTC5-binding region. Recently, TTC5-related brain malformation has been linked to tubulinopathies due to the function of TTC5 in tubulins' dynamics. We reported seven new patients with novel or recurrent TTC5 variants. The deep characterization of the molecular and phenotypic spectrum confirmed TTC5-related disorder as a recognizable, very severe neurodevelopmental syndrome. In addition, other relevant clinical aspects, including a severe pre- and postnatal growth retardation, cryptorchidism, and epilepsy, have emerged from the reversal phenotype approach and the review of already published TTC5 cases. Microcephaly and facial dysmorphism resulted in being less variable than that documented before. The TTC5 clinical features have been compared with MKHK1 published cases in the hypothesis that clinical overlap in some characteristics of the two conditions was related to the common p300 molecular pathway.


Asunto(s)
Discapacidad Intelectual , Microcefalia , Exones , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Masculino , Microcefalia/genética , Mutación , Fenotipo , Síndrome , Factores de Transcripción/genética
4.
Hum Mol Genet ; 27(18): 3177-3188, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29893856

RESUMEN

Exploring genes and pathways underlying intellectual disability (ID) provides insight into brain development and function, clarifying the complex puzzle of how cognition develops. As part of ongoing systematic studies to identify candidate ID genes, linkage analysis and next-generation sequencing revealed Zinc Finger and BTB Domain Containing 11 (ZBTB11) as a novel candidate ID gene. ZBTB11 encodes a little-studied transcription regulator, and the two identified missense variants in this study are predicted to disrupt canonical Zn2+-binding residues of its C2H2 zinc finger domain, leading to possible altered DNA binding. Using HEK293T cells transfected with wild-type and mutant GFP-ZBTB11 constructs, we found the ZBTB11 mutants being excluded from the nucleolus, where the wild-type recombinant protein is predominantly localized. Pathway analysis applied to ChIP-seq data deposited in the ENCODE database supports the localization of ZBTB11 in nucleoli, highlighting associated pathways such as ribosomal RNA synthesis, ribosomal assembly, RNA modification and stress sensing, and provides a direct link between subcellular ZBTB11 location and its function. Furthermore, given the report of prominent brain and spinal cord degeneration in a zebrafish Zbtb11 mutant, we investigated ZBTB11-ortholog knockdown in Drosophila melanogaster brain by targeting RNAi using the UAS/Gal4 system. The observed approximate reduction to a third of the mushroom body size-possibly through neuronal reduction or degeneration-may affect neuronal circuits in the brain that are required for adaptive behavior, specifying the role of this gene in the nervous system. In conclusion, we report two ID families segregating ZBTB11 biallelic mutations disrupting Zn2+-binding motifs and provide functional evidence linking ZBTB11 dysfunction to this phenotype.


Asunto(s)
Discapacidad Intelectual/genética , Sistema Nervioso/metabolismo , Proteínas Represoras/genética , Médula Espinal/metabolismo , Proteínas de Pez Cebra/genética , Animales , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Discapacidad Intelectual/patología , Mutación Missense/genética , Sistema Nervioso/patología , Fenotipo , Unión Proteica , Médula Espinal/patología , Pez Cebra/genética
5.
Mol Psychiatry ; 24(7): 1027-1039, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-29302074

RESUMEN

Autosomal recessive (AR) gene defects are the leading genetic cause of intellectual disability (ID) in countries with frequent parental consanguinity, which account for about 1/7th of the world population. Yet, compared to autosomal dominant de novo mutations, which are the predominant cause of ID in Western countries, the identification of AR-ID genes has lagged behind. Here, we report on whole exome and whole genome sequencing in 404 consanguineous predominantly Iranian families with two or more affected offspring. In 219 of these, we found likely causative variants, involving 77 known and 77 novel AR-ID (candidate) genes, 21 X-linked genes, as well as 9 genes previously implicated in diseases other than ID. This study, the largest of its kind published to date, illustrates that high-throughput DNA sequencing in consanguineous families is a superior strategy for elucidating the thousands of hitherto unknown gene defects underlying AR-ID, and it sheds light on their prevalence.


Asunto(s)
Genes Recesivos/genética , Discapacidad Intelectual/genética , Adulto , Consanguinidad , Exoma/genética , Familia , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Homocigoto , Humanos , Irán , Masculino , Persona de Mediana Edad , Mutación/genética , Linaje , Mapas de Interacción de Proteínas/genética , Secuenciación del Exoma/métodos , Secuenciación Completa del Genoma/métodos
6.
Epilepsia ; 61(11): 2474-2485, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33063863

RESUMEN

OBJECTIVE: Autosomal recessive pathogenic variants of the SLC13A5 gene are associated with severe neonatal epilepsy, developmental delay, and tooth hypoplasia/hypodontia. We report on 14 additional patients and compare their phenotypic features to previously published patients to identify the clinical hallmarks of this disorder. METHODS: We collected clinical features of 14 patients carrying biallelic variants in SLC13A5 and performed a PubMed search to identify previously published patients. RESULTS: All patients presented clonic or tonic seizures in the first days of life, evolving into status epilepticus in 57%. Analysis of seizure frequency and developmental milestones divided into five epochs showed an evolutionary trajectory of both items. In the first 3 years of life, 72% of patients had weekly/monthly seizures, often triggered by fever; 14% were seizure-free. Between the ages of 3 and 12 years, 60% become seizure-free; in the following years, up to age 18 years, 57% were seizure-free. After the age of 18 years, all three patients reaching this age were seizure-free. Similarly, 86% of patients at onset presented mild to moderate developmental impairment and diffuse hypotonia. In late childhood, all had developmental delay that was severe in most. Benzodiazepines, phenobarbital, phenytoin, and carbamazepine were the most effective drugs. Eight probands carried heterozygous compound variants, and homozygous pathogenic variants occurred in six. Literature review identified 45 patients carrying SLC13A5 gene pathogenic variants whose clinical features overlapped with our cohort. A peculiar and distinguishing sign is the presence of tooth hypoplasia and/or hypodontia in most patients. SIGNIFICANCE: Autosomal recessive pathogenic variants in SLC13A5 are associated with a distinct neonatal epileptic encephalopathy evolving into severe cognitive and motor impairment, yet with seizures that settle down in late childhood. Tooth hypoplasia or hypodontia remains the peculiar feature. The SLC13A5 gene should be screened in neonatal epileptic encephalopathies; its recessive inheritance has relevance for genetic counseling.


Asunto(s)
Encefalopatías/genética , Discapacidades del Desarrollo/genética , Epilepsia/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Simportadores/genética , Adolescente , Encefalopatías/diagnóstico , Encefalopatías/fisiopatología , Niño , Preescolar , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/fisiopatología , Electroencefalografía/tendencias , Epilepsia/diagnóstico , Epilepsia/fisiopatología , Femenino , Estudios de Seguimiento , Humanos , Masculino , Adulto Joven
7.
Neuropediatrics ; 51(1): 72-75, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31627234

RESUMEN

Muscular dystrophy-dystroglycanopathies (MDDG) are a group of genetically heterogeneous autosomal recessive disorders characterized by hypoglycosylation of α-dystroglycan. Here, we report on two female patients from a consanguineous Lebanese family that presented in early infancy with generalized muscle hypotonia and primary microcephaly. Brain magnetic resonance imaging (MRI) showed different degrees of hypoplasia of the cerebellar vermis and hypoplasia of corpus callosum. Muscle biopsy analyses revealed a muscular dystrophy with reduced expression of α-dystroglycan and merosin in immunoblot analyses. Homozygosity mapping failed to elucidate the causal mutation due to the accepted notion that, in consanguineous families, homozygote mutations cause disease. However, by applying whole exome sequencing, we identified a novel compound heterozygous POMT1 mutation that segregates with the phenotype and is in line with the clinical presentation. This underscores that a less expected compound heterozygous instead of homozygous mutation in a consanguineous marriage results in a recessive disorder and highlights the growing role of next generation sequencing in neuromuscular disorder diagnostics.


Asunto(s)
Discapacidades del Desarrollo/etiología , Manosiltransferasas/genética , Microcefalia/etiología , Distrofias Musculares/congénito , Distrofias Musculares/genética , Niño , Consanguinidad , Resultado Fatal , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Distrofias Musculares/complicaciones , Linaje , Síndrome de Wolff-Parkinson-White/genética
8.
PLoS Genet ; 13(4): e1006746, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28453519

RESUMEN

Mid-hindbrain malformations can occur during embryogenesis through a disturbance of transient and localized gene expression patterns within these distinct brain structures. Rho guanine nucleotide exchange factor (ARHGEF) family members are key for controlling the spatiotemporal activation of Rho GTPase, to modulate cytoskeleton dynamics, cell division, and cell migration. We identified, by means of whole exome sequencing, a homozygous frameshift mutation in the ARHGEF2 as a cause of intellectual disability, a midbrain-hindbrain malformation, and mild microcephaly in a consanguineous pedigree of Kurdish-Turkish descent. We show that loss of ARHGEF2 perturbs progenitor cell differentiation and that this is associated with a shift of mitotic spindle plane orientation, putatively favoring more symmetric divisions. The ARHGEF2 mutation leads to reduction in the activation of the RhoA/ROCK/MLC pathway crucial for cell migration. We demonstrate that the human brain malformation is recapitulated in Arhgef2 mutant mice and identify an aberrant migration of distinct components of the precerebellar system as a pathomechanism underlying the midbrain-hindbrain phenotype. Our results highlight the crucial function of ARHGEF2 in human brain development and identify a mutation in ARHGEF2 as novel cause of a neurodevelopmental disorder.


Asunto(s)
Movimiento Celular/genética , Mutación del Sistema de Lectura/genética , Discapacidad Intelectual/genética , Factores de Intercambio de Guanina Nucleótido Rho/genética , Animales , Citoesqueleto/genética , Exoma/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/patología , Imagen por Resonancia Magnética , Masculino , Mesencéfalo/diagnóstico por imagen , Mesencéfalo/patología , Ratones , Linaje , Rombencéfalo/diagnóstico por imagen , Rombencéfalo/patología , Transducción de Señal , Proteína de Unión al GTP rhoA/genética
9.
Am J Hum Genet ; 96(3): 386-96, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25704603

RESUMEN

We report on Dutch and Iranian families with affected individuals who present with moderate to severe intellectual disability and additional phenotypes including progressive tremor, speech impairment, and behavioral problems in certain individuals. A combination of exome sequencing and homozygosity mapping revealed homozygous mutations c.484G>A (p.Gly162Arg) and c.1898C>G (p.Pro633Arg) in SLC6A17. SLC6A17 is predominantly expressed in the brain, encodes a synaptic vesicular transporter of neutral amino acids and glutamate, and plays an important role in the regulation of glutamatergic synapses. Prediction programs and 3D modeling suggest that the identified mutations are deleterious to protein function. To directly test the functional consequences, we investigated the neuronal subcellular localization of overexpressed wild-type and mutant variants in mouse primary hippocampal neuronal cells. Wild-type protein was present in soma, axons, dendrites, and dendritic spines. p.Pro633Arg altered SLC6A17 was found in soma and proximal dendrites but did not reach spines. p.Gly162Arg altered SLC6A17 showed a normal subcellular distribution but was associated with an abnormal neuronal morphology mainly characterized by the loss of dendritic spines. In summary, our genetic findings implicate homozygous SLC6A17 mutations in autosomal-recessive intellectual disability, and their pathogenic role is strengthened by genetic evidence and in silico and in vitro functional analyses.


Asunto(s)
Sistemas de Transporte de Aminoácidos/genética , Homocigoto , Discapacidad Intelectual/genética , Trastornos Mentales/genética , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Trastornos del Habla/genética , Temblor/genética , Secuencia de Aminoácidos , Animales , Mapeo Cromosómico , Variaciones en el Número de Copia de ADN , Exoma , Femenino , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Datos de Secuencia Molecular , Mutación , Linaje , Fenotipo , Transfección , Adulto Joven
10.
Hum Mutat ; 38(6): 621-636, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28236339

RESUMEN

Intellectual disability (ID) is the hallmark of an extremely heterogeneous group of disorders that comprises a wide variety of syndromic and non-syndromic phenotypes. Here, we report on mutations in two aminoacyl-tRNA synthetases that are associated with ID in two unrelated Iranian families. In the first family, we identified a homozygous missense mutation (c.514G>A, p.Asp172Asn) in the cytoplasmic seryl-tRNA synthetase (SARS) gene. The mutation affects the enzymatic core domain of the protein and impairs its enzymatic activity, probably leading to reduced cytoplasmic tRNASer concentrations. The mutant protein was predicted to be unstable, which could be substantiated by investigating ectopic mutant SARS in transfected HEK293T cells. In the second family, we found a compound heterozygous genotype of the mitochondrial tryptophanyl-tRNA synthetase (WARS2) gene, comprising a nonsense mutation (c.325delA, p.Ser109Alafs*15), which very likely entails nonsense-mediated mRNA decay and a missense mutation (c.37T>G, p.Trp13Gly). The latter affects the mitochondrial localization signal of WARS2, causing protein mislocalization. Including AIMP1, which we have recently implicated in the etiology of ID, three genes with a role in tRNA-aminoacylation are now associated with this condition. We therefore suggest that the functional integrity of tRNAs in general is an important factor in the development and maintenance of human cognitive functions.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Discapacidad Intelectual/genética , Degradación de ARNm Mediada por Codón sin Sentido/genética , Adolescente , Adulto , Niño , Citocinas/genética , Femenino , Células HEK293 , Homocigoto , Humanos , Discapacidad Intelectual/patología , Irán , Masculino , Mutación Missense/genética , Proteínas de Neoplasias/genética , Linaje , Proteínas de Unión al ARN/genética
11.
Hum Mol Genet ; 24(20): 5697-710, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26206890

RESUMEN

Histamine (HA) acts as a neurotransmitter in the brain, which participates in the regulation of many biological processes including inflammation, gastric acid secretion and neuromodulation. The enzyme histamine N-methyltransferase (HNMT) inactivates HA by transferring a methyl group from S-adenosyl-l-methionine to HA, and is the only well-known pathway for termination of neurotransmission actions of HA in mammalian central nervous system. We performed autozygosity mapping followed by targeted exome sequencing and identified two homozygous HNMT alterations, p.Gly60Asp and p.Leu208Pro, in patients affected with nonsyndromic autosomal recessive intellectual disability from two unrelated consanguineous families of Turkish and Kurdish ancestry, respectively. We verified the complete absence of a functional HNMT in patients using in vitro toxicology assay. Using mutant and wild-type DNA constructs as well as in silico protein modeling, we confirmed that p.Gly60Asp disrupts the enzymatic activity of the protein, and that p.Leu208Pro results in reduced protein stability, resulting in decreased HA inactivation. Our results highlight the importance of inclusion of HNMT for genetic testing of individuals presenting with intellectual disability.


Asunto(s)
Genes Recesivos , Histamina N-Metiltransferasa/genética , Discapacidad Intelectual/genética , Mutación Missense , Adolescente , Adulto , Secuencia de Aminoácidos , Dominio Catalítico , Niño , Preescolar , Simulación por Computador , Análisis Mutacional de ADN , Exoma , Femenino , Histamina N-Metiltransferasa/metabolismo , Humanos , Lactante , Discapacidad Intelectual/enzimología , Irak , Masculino , Datos de Secuencia Molecular , Linaje , Alineación de Secuencia , Turquía , Población Blanca/genética
12.
Trends Genet ; 30(1): 32-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24176302

RESUMEN

Most severe forms of intellectual disability (ID) have specific genetic causes. Numerous X chromosome gene defects and disease-causing copy-number variants have been linked to ID and related disorders, and recent studies have revealed that sporadic cases are often due to dominant de novo mutations with low recurrence risk. For autosomal recessive ID (ARID) the recurrence risk is high and, in populations with frequent parental consanguinity, ARID is the most common form of ID. Even so, its elucidation has lagged behind. Here we review recent progress in this field, show that ARID is not rare even in outbred Western populations, and discuss the prospects for improving its diagnosis and prevention.


Asunto(s)
Trastornos del Conocimiento/genética , Genes Recesivos , Consanguinidad , Genes Ligados a X , Ligamiento Genético , Sitios Genéticos , Humanos , Discapacidad Intelectual/genética , Mutación
13.
Nature ; 478(7367): 57-63, 2011 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-21937992

RESUMEN

Common diseases are often complex because they are genetically heterogeneous, with many different genetic defects giving rise to clinically indistinguishable phenotypes. This has been amply documented for early-onset cognitive impairment, or intellectual disability, one of the most complex disorders known and a very important health care problem worldwide. More than 90 different gene defects have been identified for X-chromosome-linked intellectual disability alone, but research into the more frequent autosomal forms of intellectual disability is still in its infancy. To expedite the molecular elucidation of autosomal-recessive intellectual disability, we have now performed homozygosity mapping, exon enrichment and next-generation sequencing in 136 consanguineous families with autosomal-recessive intellectual disability from Iran and elsewhere. This study, the largest published so far, has revealed additional mutations in 23 genes previously implicated in intellectual disability or related neurological disorders, as well as single, probably disease-causing variants in 50 novel candidate genes. Proteins encoded by several of these genes interact directly with products of known intellectual disability genes, and many are involved in fundamental cellular processes such as transcription and translation, cell-cycle control, energy metabolism and fatty-acid synthesis, which seem to be pivotal for normal brain development and function.


Asunto(s)
Trastornos del Conocimiento/genética , Genes Recesivos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Discapacidad Intelectual/genética , Encéfalo/metabolismo , Encéfalo/fisiología , Ciclo Celular , Consanguinidad , Análisis Mutacional de ADN , Exones/genética , Redes Reguladoras de Genes , Genes Esenciales/genética , Homocigoto , Humanos , Redes y Vías Metabólicas , Mutación/genética , Especificidad de Órganos , Sinapsis/metabolismo
14.
Nat Genet ; 38(3): 331-6, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16474405

RESUMEN

Noonan syndrome (MIM 163950) is characterized by short stature, facial dysmorphism and cardiac defects. Heterozygous mutations in PTPN11, which encodes SHP-2, cause approximately 50% of cases of Noonan syndrome. The SHP-2 phosphatase relays signals from activated receptor complexes to downstream effectors, including Ras. We discovered de novo germline KRAS mutations that introduce V14I, T58I or D153V amino acid substitutions in five individuals with Noonan syndrome and a P34R alteration in a individual with cardio-facio-cutaneous syndrome (MIM 115150), which has overlapping features with Noonan syndrome. Recombinant V14I and T58I K-Ras proteins show defective intrinsic GTP hydrolysis and impaired responsiveness to GTPase activating proteins, render primary hematopoietic progenitors hypersensitive to growth factors and deregulate signal transduction in a cell lineage-specific manner. These studies establish germline KRAS mutations as a cause of human disease and infer that the constellation of developmental abnormalities seen in Noonan syndrome spectrum is, in large part, due to hyperactive Ras.


Asunto(s)
Genes ras , Mutación de Línea Germinal , Síndrome de Noonan/genética , Adolescente , Femenino , Tamización de Portadores Genéticos , Guanosina Trifosfato/metabolismo , Humanos , Lactante , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Proteínas Tirosina Fosfatasas/genética
15.
Hum Mutat ; 35(12): 1427-35, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25219469

RESUMEN

Next-generation sequencing has greatly accelerated the search for disease-causing defects, but even for experts the data analysis can be a major challenge. To facilitate the data processing in a clinical setting, we have developed a novel medical resequencing analysis pipeline (MERAP). MERAP assesses the quality of sequencing, and has optimized capacity for calling variants, including single-nucleotide variants, insertions and deletions, copy-number variation, and other structural variants. MERAP identifies polymorphic and known causal variants by filtering against public domain databases, and flags nonsynonymous and splice-site changes. MERAP uses a logistic model to estimate the causal likelihood of a given missense variant. MERAP considers the relevant information such as phenotype and interaction with known disease-causing genes. MERAP compares favorably with GATK, one of the widely used tools, because of its higher sensitivity for detecting indels, its easy installation, and its economical use of computational resources. Upon testing more than 1,200 individuals with mutations in known and novel disease genes, MERAP proved highly reliable, as illustrated here for five families with disease-causing variants. We believe that the clinical implementation of MERAP will expedite the diagnostic process of many disease-causing defects.


Asunto(s)
Enfermedad/genética , Mutación , Análisis de Secuencia/métodos , Humanos
16.
Am J Med Genet A ; 164A(11): 2753-63, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25125150

RESUMEN

NDST1 was recently proposed as a candidate gene for autosomal recessive intellectual disability in two families. It encodes a bifunctional GlcNAc N-deacetylase/N-sulfotransferase with important functions in heparan sulfate biosynthesis. In mice, Ndst1 is crucial for embryonic development and homozygous null mutations are perinatally lethal. We now report on two additional unrelated families with homozygous missense NDST1 mutations. All mutations described to date predict the substitution of conserved amino acids in the sulfotransferase domain, and mutation modeling predicts drastic alterations in the local protein conformation. Comparing the four families, we noticed significant overlap in the clinical features, including both demonstrated and apparent intellectual disability, muscular hypotonia, epilepsy, and postnatal growth deficiency. Furthermore, in Drosophila, knockdown of sulfateless, the NDST ortholog, impairs long-term memory, highlighting its function in cognition. Our data confirm NDST1 mutations as a cause of autosomal recessive intellectual disability with a distinctive phenotype, and support an important function of NDST1 in human development.


Asunto(s)
Genes Recesivos , Discapacidad Intelectual/genética , Mutación Missense , Sulfotransferasas/genética , Adolescente , Adulto , Animales , Animales Modificados Genéticamente , Conducta Animal , Niño , Preescolar , Biología Computacional , Consanguinidad , Análisis Mutacional de ADN , Drosophila/genética , Facies , Femenino , Técnicas de Silenciamiento del Gen , Estudio de Asociación del Genoma Completo , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Discapacidad Intelectual/diagnóstico , Masculino , Modelos Moleculares , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple , Conformación Proteica , Sulfotransferasas/química , Adulto Joven
17.
Am J Med Genet A ; 161A(8): 1915-22, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23825041

RESUMEN

Succinic semialdehyde dehydrogenase (SSADH) deficiency is a disorder of the catabolism of the neurotransmitter gamma-aminobutyric acid (GABA) with a very variable clinical phenotype ranging from mild intellectual disability to severe neurological defects. We report here on a large Iranian family with four affected patients presenting with severe intellectual disability, developmental delay and generalized tonic-clonic seizures. Molecular genetic analysis revealed a missense mutation c.901A>G (p.K301E, RefSeq number NM_001080) in ALDH5A1 co-segregating with the disease in the family. The missense mutation affects an amino acid residue that is highly conserved across the animal kingdom. Protein modeling showed that p.K301E most likely leads to a loss of NAD(+) binding and a predicted decrease in the free energy by 6.67 kcal/mol furthermore suggests a severe destabilization of the protein. In line with these in silico observations, no SSADH enzyme activity could be detected in patient lymphoblasts.


Asunto(s)
1-Pirrolina-5-Carboxilato Deshidrogenasa/genética , Errores Innatos del Metabolismo de los Aminoácidos/genética , Discapacidad Intelectual/genética , Mutación Missense/genética , Adulto , ADN/análisis , ADN/genética , Discapacidades del Desarrollo , Humanos , Irán , Masculino , Linaje , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Succionato-Semialdehído Deshidrogenasa/sangre , Succionato-Semialdehído Deshidrogenasa/deficiencia , Succionato-Semialdehído Deshidrogenasa/genética , Adulto Joven
18.
Nat Genet ; 35(4): 313-5, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14634649

RESUMEN

We found mutations in the gene PQBP1 in 5 of 29 families with nonsyndromic (MRX) and syndromic (MRXS) forms of X-linked mental retardation (XLMR). Clinical features in affected males include mental retardation, microcephaly, short stature, spastic paraplegia and midline defects. PQBP1 has previously been implicated in the pathogenesis of polyglutamine expansion diseases. Our findings link this gene to XLMR and shed more light on the pathogenesis of this common disorder.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X/genética , Mutación/genética , Oligopéptidos/genética , Proteínas Portadoras/genética , Proteínas de Unión al ADN , Femenino , Ligamiento Genético , Humanos , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/clasificación , Discapacidad Intelectual Ligada al Cromosoma X/etiología , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Linaje , Síndrome
19.
Genes (Basel) ; 14(2)2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36833176

RESUMEN

CSNK2B encodes for the regulatory subunit of the casein kinase II, a serine/threonine kinase that is highly expressed in the brain and implicated in development, neuritogenesis, synaptic transmission and plasticity. De novo variants in this gene have been identified as the cause of the Poirier-Bienvenu Neurodevelopmental Syndrome (POBINDS) characterized by seizures and variably impaired intellectual development. More than sixty mutations have been described so far. However, data clarifying their functional impact and the possible pathomechanism are still scarce. Recently, a subset of CSNK2B missense variants affecting the Asp32 in the KEN box-like domain were proposed as the cause of a new intellectual disability-craniodigital syndrome (IDCS). In this study, we combined predictive functional and structural analysis and in vitro experiments to investigate the effect of two CSNK2B mutations, p.Leu39Arg and p.Met132LeufsTer110, identified by WES in two children with POBINDS. Our data prove that loss of the CK2beta protein, due to the instability of mutant CSNK2B mRNA and protein, resulting in a reduced amount of CK2 complex and affecting its kinase activity, may underlie the POBINDS phenotype. In addition, the deep reverse phenotyping of the patient carrying p.Leu39Arg, with an analysis of the available literature for individuals with either POBINDS or IDCS and a mutation in the KEN box-like motif, might suggest the existence of a continuous spectrum of CSNK2B-associated phenotypes rather than a sharp distinction between them.


Asunto(s)
Haploinsuficiencia , Discapacidad Intelectual , Humanos , Discapacidad Intelectual/genética , Mutación , Encéfalo/metabolismo , Fenotipo , Quinasa de la Caseína II/genética
20.
Genes (Basel) ; 13(11)2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36360260

RESUMEN

Dual molecular diagnoses are defined as the presence of pathogenic variants at two distinct and independently segregating loci that cause two different Mendelian conditions. In this study, we report the identification of double genetic disorders in a series of patients with complex clinical features. In the last 24 months, 342 syndromic patients have been recruited and clinically characterised. Whole Exome Sequencing analysis has been performed on the proband and on both parents and identified seven patients affected by a dual molecular diagnosis. Upon a detailed evaluation of both their clinical and molecular features, subjects are able to be divided into two groups: (A) five patients who present distinct phenotypes, due to each of the two different underlying genetic diseases; (B) two patients with overlapping clinical features that may be underpinned by both the identified genetic variations. Notably, only in one case a multilocus genomic variation was already suspected during the clinical evaluation. Overall, our findings highlight how dual molecular diagnoses represent a challenging model of complex inheritance that should always be considered whenever a patient shows atypical clinical features. Indeed, an accurate genetic characterisation is of the utmost importance to provide patients with a personalised and safe clinical management.


Asunto(s)
Genómica , Herencia Multifactorial , Fenotipo , Familia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA