Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(20): 6031-6037, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38717626

RESUMEN

Manipulating the polarization of light at the nanoscale is key to the development of next-generation optoelectronic devices. This is typically done via waveplates using optically anisotropic crystals, with thicknesses on the order of the wavelength. Here, using a novel ultrafast electron-beam-based technique sensitive to transient near fields at THz frequencies, we observe a giant anisotropy in the linear optical response in the semimetal WTe2 and demonstrate that one can tune the THz polarization using a 50 nm thick film, acting as a broadband wave plate with thickness 3 orders of magnitude smaller than the wavelength. The observed circular deflections of the electron beam are consistent with simulations tracking the trajectory of the electron beam in the near field of the THz pulse. This finding offers a promising approach to enable atomically thin THz polarization control using anisotropic semimetals and defines new approaches for characterizing THz near-field optical response at far-subwavelength length scales.

2.
Adv Mater ; 33(37): e2101875, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34331368

RESUMEN

On-chip dynamic strain engineering requires efficient micro-actuators that can generate large in-plane strains. Inorganic electrochemical actuators are unique in that they are driven by low voltages (≈1 V) and produce considerable strains (≈1%). However, actuation speed and efficiency are limited by mass transport of ions. Minimizing the number of ions required to actuate is thus key to enabling useful "straintronic" devices. Here, it is shown that the electrochemical intercalation of exceptionally few lithium ions into WTe2 causes large anisotropic in-plane strain: 5% in one in-plane direction and 0.1% in the other. This efficient stretching of the 2D WTe2 layers contrasts to intercalation-induced strains in related materials which are predominantly in the out-of-plane direction. The unusual actuation of Lix WTe2 is linked to the formation of a newly discovered crystallographic phase, referred to as Td', with an exotic atomic arrangement. On-chip low-voltage (<0.2 V) control is demonstrated over the transition to the novel phase and its composition. Within the Td'-Li0.5- δ WTe2 phase, a uniaxial in-plane strain of 1.4% is achieved with a change of δ of only 0.075. This makes the in-plane chemical expansion coefficient of Td'-Li0.5-δ WTe2 far greater than of any other single-phase material, enabling fast and efficient planar electrochemical actuation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA