RESUMEN
This work explores astaxanthin (AXT), a valuable xanthophyll ketocarotenoid pigment with significant health benefits and diverse applications across various industries. It discusses the prevalence of synthetic AXT, and the development of natural-based alternatives derived from microorganisms such as microalgae, bacteria, and yeast. The chapter examines the potential of microbial AXT production, highlighting the advantages and challenges associated with natural AXT. Key microorganisms like Haematococcus pluvialis, Paracoccus carotinifaciens, and Phaffia rhodozyma are emphasized for their role in commercially producing this valuable ketocarotenoid. The narrative covers the complexities and opportunities in microbial AXT production, from cell structure implications to downstream processing strategies. Additionally, the chapter addresses current applications, commercialization trends, and market dynamics of natural microbial AXT, emphasizing the importance of cost-effective production, regulatory compliance, and technological advancements to reduce the market cost of the final product. As demand for natural microbial-based AXT rises, this chapter envisions a future where research, innovation, and collaboration drive sustainable and competitive microbial AXT production, fostering growth in this dynamic market.
Asunto(s)
Xantófilas , Xantófilas/metabolismo , Microalgas/metabolismo , Bacterias/metabolismo , Bacterias/genética , Bacterias/crecimiento & desarrollo , Paracoccus/metabolismo , Paracoccus/genética , Paracoccus/crecimiento & desarrollo , Microbiología Industrial/métodos , BasidiomycotaRESUMEN
In recent years, microbial carotenoids have emerged as a promising alternative for the pharmaceutical and food industries, particularly in promoting human health due to their potent antioxidant and antimicrobial properties. Microbial carotenoids, particularly those produced by yeast, bacteria, and microalgae, are synthesized intracellularly, requiring the use of solvents for their effective extraction and recovery. The conventional use of toxic volatile organic solvents (VOCs) like hexane, petroleum ether, and dimethyl sulfoxide in the extraction of microbial carotenoids has been common. However, ongoing research is introducing innovative, non-toxic, environmentally friendly tailor-made solvents, such as ionic liquids (IL) and deep eutectic solvents (DES), indicating a new era of cleaner and biocompatible technologies. This review aims to highlight recent advancements in utilizing IL and DES for obtaining carotenoids from microorganisms. Additionally, we explore the utilization of in silico tools designed to determine the solubilities of microbial carotenoids in tailor-made DES and ILs. This presents a promising alternative for the scientific community, potentially reducing the need for extensive experimental screening of solvents for the recovery of microbial carotenoids in the separation processing. According to our expert perspective, both IL and DES exhibit a plethora of exceptional attributes for the recovery of microbial carotenoids. Nevertheless, the current employment of these solvents for recovery of carotenoids is restricted to scientific exploration, as their feasibility for practical application in industrial settings has yet to be conclusively demonstrated. KEY POINTS: ⢠ILs and DES share many tailoring properties for the recovery of microbial carotenoids ⢠The use of ILs and DES for microbial carotenoid extraction remains driven by scientific curiosity. ⢠The economic feasibility of ILs and DES is yet to be demonstrated in industrial applications.
Asunto(s)
Carotenoides , Líquidos Iónicos , Humanos , Solventes , Antioxidantes , DimetilsulfóxidoRESUMEN
The demand for natural products has significantly increased, driving interest in carotenoids as bioactive compounds for both human and animal consumption. Carotenoids, natural pigments with several biological properties, like antioxidant and antimicrobial, are increasingly preferred over synthetic colorants by the consumers (chemophobia). The global carotenoid market is projected to reach US$ 2.45 billion by 2034, driven by consumer preferences for natural ingredients and regulatory restrictions on synthetic products. Among carotenoids, bacterioruberin (BR), a C50 carotenoid naturally found in microbial hyperhalophilic archaea and in moderate halophilic archaea, stands out for its exceptional antioxidant capabilities, surpassing even well-known carotenoids like astaxanthin. BR's and its derivatives unique structure, with 13 conjugated double bonds and four -OH groups, contributes to its potent antioxidant activity and potential applications in food, feed, supplements, pharmaceuticals, and cosmeceuticals. This review explores BR's chemical and biological properties, upstream and downstream technologies, analytical techniques, market applications, and prospects in the colorants industry. While BR is not intended to replace existing carotenoids, its inclusion enriches the range of natural products available to meet the rising demand for natural alternatives. Furthermore, BR's promising antioxidant capacity positions it as a key player in the future carotenoid market, offering diverse industries a natural and potent alternative for several applications.
Asunto(s)
Antioxidantes , Carotenoides , Industria de Alimentos , Carotenoides/metabolismo , Carotenoides/química , Antioxidantes/farmacología , Antioxidantes/química , Humanos , Archaea/metabolismo , AnimalesRESUMEN
The demand for food, feed, cosmeceutical, and nutraceutical supplements/additives from natural sources has been rapidly increasing, with expectations for a faster expansion than the growth of the global markets in the coming years. In this framework, a particular interest is given to carotenoids due to their outstanding antioxidant activities, particularly the xanthophylls class. Torularhodin is one of these carotenoids that stands out for its multifunctional role as: antioxidant, anticancer and antimicrobial, yet its commercial potential is still unexplored. Although most xanthophylls can be naturally found in: microbial, plant and animal sources, torularhodin is only produced by microbial species, especially red oleaginous yeast. The microbial production of xanthophylls has many advantages as compared to other natural sources, such as: the need for low production area, easier extraction, high yields (at optimum operating conditions), and low (or no) seasonal, climatic, and geographic variation dependency. Due to the importance of natural products and their relevance to the market, this review provides a comprehensive overview of the: properties, characteristics and potential health benefits of torularhodin. Moreover, the most promising developments in both upstream and downstream processing to obtain this colorant from microbial sources are considered. For this purpose, the main microorganisms used for torularhodin production are firstly reviewed, including biosynthesis pathway and torularhodin properties. Following, an overall analysis of the processing aspects related with its: extraction, separation and purification is provided. Lastly, current status and future trends of torularhodin-based processes and products such as therapeutic agents or biomaterials are discussed, indicating promising directions toward biorefinery and circular economy.
Asunto(s)
Antioxidantes , Carotenoides , Animales , XantófilasRESUMEN
Rhodotorula sp. are well-known for their ability to biosynthesize a diverse range of valuable biomolecules, including carotenoids, lipids, enzymes, and polysaccharides. Despite the high number of studies conducted using Rhodotorula sp. at the laboratory scale, most of these do not address all processual aspects necessary for scaling up these processes for industrial applications. This chapter explores the potential of Rhodotorula sp. as a cell factory for the production of distinct biomolecules, with a particular emphasis on exploring their use from a biorefinery perspective. Through in-depth discussions of the latest research and insights into non-conventional applications, we aim to provide a comprehensive understanding of Rhodotorula sp.'s ability to produce biofuels, bioplastics, pharmaceuticals, and other valuable biochemicals. This book chapter also examines the fundamentals and challenges associated with the optimizing upstream and downstream processing of Rhodotorula sp-based processes. We believe that through this chapter, readers with different levels of expertise will gain insights into strategies for enhancing the sustainability, efficiency, and effectiveness of producing biomolecules using Rhodotorula sp.
Asunto(s)
Rhodotorula , Rhodotorula/genética , Carotenoides , Polisacáridos , BiocombustiblesRESUMEN
Astaxanthin (AXT) is a natural xanthophyll with strong antioxidant, anticancer and antimicrobial activities, widely used in the food, feed, pharmaceutical and nutraceutical industries. So far, 95% of the AXT global market is produced by chemical synthesis, but growing customer preferences for natural products are currently changing the market for natural AXT, highlighting the production from microbially-based sources such as the yeast Phaffia rhodozyma. The AXT production by P. rhodozyma has been studied for a long time at a laboratory scale, but its use in industrial-scale processes is still very scarce. The optimization of growing conditions as well as an effective integration of upstream-downstream operations into P. rhodozyma-based AXT processes has not yet been fully achieved. With this critical review, we scrutinized the main approaches for producing AXT using P. rhodozyma strains, highlighting the impact of using conventional and non-conventional procedures for the extraction of AXT from yeast cells. In addition, we also pinpointed research directions, for example, the use of low-cost residues to improve the economic and environmental sustainability of the bioprocess, the use of environmentally/friendly and low-energetic integrative operations for the extraction and purification of AXT, as well as the need of further human clinical trials using yeast-based AXT.
Asunto(s)
Basidiomycota , Saccharomyces cerevisiae , Humanos , Xantófilas , Biotecnología , Basidiomycota/químicaRESUMEN
Microorganisms such as bacteria, microalgae and fungi, are natural and rich sources of several valuable bioactive antioxidant's compounds, including carotenoids. Among the carotenoids with antioxidant properties, astaxanthin can be highlighted due to its pharmaceutical, feed, food, cosmetic and biotechnological applications. The best-known producers of astaxanthin are yeast and microalgae cells that biosynthesize this pigment intracellularly, requiring efficient and sustainable downstream procedures for its recovery. Conventional multi-step procedures usually involve the consumption of large amounts of volatile organic compounds (VOCs), which are regarded as toxic and hazardous chemicals. Considering these environmental issues, this review is focused on revealing the potential of unconventional extraction procedures [viz., Supercritical Fluid Extraction (SFE), Ultrasound-Assisted Extraction (UAE), Microwave-Assisted Extraction (MAE), High-Pressure Homogenization (HPH)] combined with alternative green solvents (biosolvents, eutectic solvents and ionic liquids) for the recovery of microbial-based astaxanthin from microalgae (such as Haematococcus pluvialis) and yeast (such as Phaffia rhodozyma) cells. The principal advances in the area, process bottlenecks, solvent selection and strategies to improve the recovery of microbial astaxanthin are emphasized. The promising recovery yields using these environmentally friendly procedures in lab-scale are good indications and directions for their effective use in biotechnological processes for the production of commercial feed and food ingredients like astaxanthin.
Asunto(s)
Antioxidantes , Microalgas , Biomasa , Saccharomyces cerevisiae , Carotenoides , Solventes/químicaRESUMEN
The attractive biological properties and health benefits of natural astaxanthin (AXT), including its antioxidant and anti-carcinogenic properties, have garnered significant attention from academia and industry seeking natural alternatives to synthetic products. AXT, a red ketocarotenoid, is mainly produced by yeast, microalgae, wild or genetically engineered bacteria. Unfortunately, the large fraction of AXT available in the global market is still obtained using non-environmentally friendly petrochemical-based products. Due to the consumers concerns about synthetic AXT, the market of microbial-AXT is expected to grow exponentially in succeeding years. This review provides a detailed discussion of AXT's bioprocessing technologies and applications as a natural alternative to synthetic counterparts. Additionally, we present, for the first time, a very comprehensive segmentation of the global AXT market and suggest research directions to improve microbial production using sustainable and environmentally friendly practices. KEY POINTS: ⢠Unlock the power of microorganisms for high value AXT production. ⢠Discover the secrets to cost-effective microbial AXT processing. ⢠Uncover the future opportunities in the AXT market.
Asunto(s)
Antioxidantes , Ingeniería Genética , Xantófilas , LevadurasRESUMEN
The development of an effective, realistic, and sustainable microbial biorefinery depends on several factors, including as one of the key aspects an adequate selection of microbial strain. The oleaginous red yeast Rhodotorula sp. has been studied as one powerful source for a plethora of high added-value biomolecules, such as carotenoids, lipids, and enzymes. Although known for over a century, the use of Rhodotorula sp. as resource for valuable products has not yet commercialized. Current interests for Rhodotorula sp. yeast have sparked from its high nutritional versatility and ability to convert agro-food residues into added-value biomolecules, two attractive characteristics for designing new biorefineries. In addition, as for other yeast-based bioprocesses, the overall process sustainability can be maximized by a proper integration with subsequent downstream processing stages, for example, by using eco-friendly solvents for the recovery of intracellular products from yeast biomass. This review intends to reflect on the current state of the art of microbial bioprocesses using Rhodotorula species. Therefore, we will provide an analysis of bioproduction performance with some insights regarding downstream separation steps for the extraction of high added-value biomolecules (specifically using efficient and sustainable platforms), providing information regarding the potential applications of biomolecules produced by Rhodotorula sp, as well as detailing the strengths and limitations of yeast-based biorefinery approaches. Novel genetic engineering technologies are further discussed, indicating some directions on their possible use for maximizing the potential of Rhodotorula sp. as cell factories. KEY POINTS: ⢠Rhodotorula sp. are valuable source of high value-added compounds. ⢠Potential of employing Rhodotorula sp. in a multiple product biorefinery. ⢠Future perspectives in the biorefining of Rhodotorula sp. were discussed.
Asunto(s)
Rhodotorula , Rhodotorula/genética , Biomasa , Carotenoides , Ingeniería Genética , BiocombustiblesRESUMEN
Sustainably producing nutrients beyond Earth is one of the biggest technical challenges for future extended human space missions. Microorganisms such as microalgae and cyanobacteria can provide astronauts with nutrients, pharmaceuticals, pure oxygen, and bio-based polymers, making them an interesting resource for constructing a circular bioregenerative life support system in space.
Asunto(s)
Cianobacterias , Microalgas , Vuelo Espacial , Microalgas/metabolismo , Cianobacterias/metabolismo , Humanos , Sistemas de Manutención de la Vida , AstronautasRESUMEN
Bioremediation stands as a promising solution amid the escalating challenges posed by environmental pollution. Over the past 25 years, the influx of synthetic chemicals and hazardous contaminants into ecosystems has required innovative approaches for mitigation and restoration. The resilience of these compounds stems from their non-natural existence, distressing both human and environmental health. Microbes take center stage in this scenario, demonstrating their ability of biodegradation to catalyze environmental remediation. Currently, the scientific community supports a straight connection between biorefinery and bioremediation concepts to encourage circular bio/economy practices. This review aimed to give a pre-overview of the state of the art regarding the main microorganisms employed in bioremediation processes and the different bioremediation approaches applied. Moreover, focus has been given to the implementation of bioremediation as a novel approach to agro-industrial waste management, highlighting how it is possible to reduce environmental pollution while still obtaining value-added products with commercial value, meeting the goals of a circular bioeconomy. The main drawbacks and challenges regarding the feasibility of bioremediation were also reported.
RESUMEN
The growing consumer demand for natural and eco-friendly food products motivates the development and evaluation of new and natural inputs for the food industry. So, this work explores the potential of grape pomace (GP) from winemaking, a food production residue, to obtain an anthocyanin-rich, ready-to-use extract with antioxidant activity that can confer improved color-rich gummy candies. The anthocyanins' chemical nature and the predictive COSMO-SAC model was considered for screening the best natural eutectic mixture for anthocyanin extraction. The eutectic mixtures composed of choline chloride as a hydrogen bond acceptor and acetic and citric acids as hydrogen bond donors were selected as solvents. The extraction was performed using a high-shear disperser (Ultra-Turrax®) at 45 °C and was stirred at 5000 rpm for 10 min. The extracts presented high total anthocyanin content (TAC), up to 60 µg equivalent of cyaniding-3-glucoside/g of dry GP, and high antioxidant activity as determined by DPPH and FRAP assays. The phenolic profile was also determined by high-performance liquid chromatography (HPLC) and the results corroborated with the antioxidant activity of the extracts. The results also demonstrate that eutectic mixtures enhance the extraction efficiency of anthocyanins and improve their stability, making them suitable for incorporation into functional food products such as gummies, acting as natural colorants.
RESUMEN
Given their multifaceted roles, carotenoids have garnered significant scientific interest, resulting in a comprehensive and intricate body of literature that occasionally presents conflicting findings concerning the proper characterization, quantification, and bioavailability of these compounds. Nevertheless, it is undeniable that the pursuit of novel carotenoids remains a crucial endeavor, as their diverse properties, functionalities and potential health benefits make them invaluable natural resources in agri-food and health promotion through the diet. In this framework, particular attention is given to ketocarotenoids, viz., astaxanthin (one of them) stands out for its possible multifunctional role as an antioxidant, anticancer, and antimicrobial agent. It has been widely explored in the market and utilized in different applications such as nutraceuticals, food additives, among others. Adonirubin and adonixanthin can be naturally found in plants and microorganisms. Due to the increasing significance of natural-based products and the remarkable opportunity to introduce these ketocarotenoids to the market, this review aims to provide an expert overview of the pros and cons associated with adonirubin and adonixanthin.
Asunto(s)
Cantaxantina/análogos & derivados , Carotenoides , AntioxidantesRESUMEN
Microorganisms, such as yeasts, filamentous fungi, bacteria, and microalgae, have gained significant attention due to their potential in producing commercially valuable natural carotenoids. In recent years, Phaffia rhodozyma yeasts have emerged as intriguing non-conventional sources of carotenoids, particularly astaxanthin and ß-carotene. However, the shift from academic exploration to effective industrial implementation has been challenging to achieve. This study aims to bridge this gap by assessing various scenarios for carotenoid production and recovery. It explores the use of ionic liquids (ILs) and bio-based solvents (ethanol) to ensure safe extraction. The evaluation includes a comprehensive analysis involving Life Cycle Assessment (LCA), biocompatibility assessment, and Techno-Economic Analysis (TEA) of two integrated technologies that utilize choline-based ILs and ethanol (EtOH) for astaxanthin (+ß-carotene) recovery from P. rhodozyma cells. This work evaluates the potential sustainability of integrating these alternative solvents within a yeast-based bioeconomy.
Asunto(s)
Basidiomycota , beta Caroteno , Saccharomyces cerevisiae , Carotenoides , Etanol , Solventes , XantófilasRESUMEN
Astaxanthin (AXT) is a ketocarotenoid with several properties, including antioxidant, antidiabetic and anticancer with a wide range of applications in cosmeceutical, feed, food and pharmaceuticals sectors. The large fraction of AXT available in the market is obtained by chemical route, but the consumers preference for natural products are changing the global market of AXT, and due to that several companies are looking for potential alternative sources such as Gram-negative bacteria Paracoccus carotinifaciens (P. carotinifaciens) to obtain natural AXT. The aim of this critical review is to provide a comprehensive overview of the latest AXT research findings and characteristics of the hyperproducer-AXT P. carotinifaciens. Moreover, a brief description of the potential application of P. carotinifaciens for the production of natural AXT at industrial scale for commercial purposes and the latest advancements in the upstream and downstream procedures following the biorefinery and circular economy percepts are considered.
Asunto(s)
Paracoccus , Xantófilas , Xantófilas/química , Antioxidantes , Paracoccus/químicaRESUMEN
Paracoccus carotinifaciens could be considered a key microbial factory for obtaining healthier natural products such as astaxanthin (AXT), thus contributing to a bioeconomy. Short cultivation time, high production titers, and thin cell wall are the main advantages that make this bacterium promising in the development of sustainable third-generation biorefineries.
Asunto(s)
Paracoccus , Xantófilas , Paracoccus/genéticaRESUMEN
This study aimed to produce carotenoids by Phaffia rhodozyma in a stirred-tank bioreactor under the influence of magnetic fields (MF) and to evaluate a sustainable approach to recover them from the yeast biomass. MF application proved to be effective in increasing 8.6 and 22.9 % of ß-carotene and astaxanthin production, respectively. Regarding solid-liquid extraction (SLE), the ability of aqueous and ethanolic solutions of protic ionic liquids (PILs) was determined. ß-carotene and astaxanthin recovery yields increased with the anion alkyl chain length hydrophobicity. [Pro][Oct]:EtOH (50 % v v-1) was selected as the effective solvent. Moreover, it led to improvement in carotenoid stability at different storage temperatures over time in comparison with the control. This study is one of the first to describe an effective and sustainable approach to move carotenoid production from shake flasks to a bioreactor under the influence of MF and recover carotenoids from P. rhodozyma biomass.
Asunto(s)
Basidiomycota , beta Caroteno , Carotenoides , Reactores Biológicos , Etanol , Saccharomyces cerevisiaeRESUMEN
There is a growing demand in the development of environmentally friendly technologies, based on the use of more biocompatible solvents for the recovery of natural bioactive compounds. In this work, the red yeast Phaffia rhodozyma biomass was used as a source of carotenoids to develop an integrative and efficient platform that promotes the recovery of astaxanthin and ß-carotene using bio-based solvents (BioSs). The extraction aptitude of pure BioSs was evaluated and compared with the conventional organic method. At this point, the influence of the BioSs molecular structures involved in the extraction procedures were also investigated. Overall, envisaging the industrial application of the process, an integrative platform was proposed for the recovery of astaxanthin/ß-carotene from P. rhodozyma biomass and the recycle of the BioSs. The life cycle assessment of the proposed technology using EtOH was evaluated, validating the sustainability of BioSs in the process with environmental impact reduction of 3-12%.
Asunto(s)
Basidiomycota , beta Caroteno , Biomasa , Solventes , XantófilasRESUMEN
Carotenoids over-producing yeast has become a focus of interest of the biorefineries, in which the integration of the bioproduction with the following downstream processing units for the recovery and purification of carotenoids and other value-added byproducts is crucial to improve the sustainability and profitability of the overall bioprocess. Aiming the future implementation of Phaffia rhodozyma-based biorefineries, in this work, an integrative process for fractionation of intracellular compounds from P. rhodozyma biomass using non-hazardous bio-based solvents was developed. After one-extraction step, the total amount of astaxanthin, ß-carotene, lipids and proteins recovered was 63.11 µg/gDCW, 42.81 µg/gDCW, 53.75 mg/gDCW and 10.93 mg/g, respectively. The implementation of sequential back-extraction processes and integration with saponification and precipitation operations allowed the efficient fractionation and recovery (% w/w) of astaxanthin (â¼72.5 %), ß-carotene â¼90.17 %), proteins (21.04 %) and lipids (23.72 %). After fractionation, the manufacture of carotenoids-based products was demonstrated, through the mixture of carotenoids-rich extracts with bacterial cellulose to obtain biologically active bioplastics.