Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(52): e2304900120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38109529

RESUMEN

Diacylglycerol lipase-beta (DAGLß) serves as a principal 2-arachidonoylglycerol (2-AG) biosynthetic enzyme regulating endocannabinoid and eicosanoid metabolism in immune cells including macrophages and dendritic cells. Genetic or pharmacological inactivation of DAGLß ameliorates inflammation and hyper-nociception in preclinical models of pathogenic pain. These beneficial effects have been assigned principally to reductions in downstream proinflammatory lipid signaling, leaving alternative mechanisms of regulation largely underexplored. Here, we apply quantitative chemical- and phospho-proteomics to find that disruption of DAGLß in primary macrophages leads to LKB1-AMPK signaling activation, resulting in reprogramming of the phosphoproteome and bioenergetics. Notably, AMPK inhibition reversed the antinociceptive effects of DAGLß blockade, thereby directly supporting DAGLß-AMPK crosstalk in vivo. Our findings uncover signaling between endocannabinoid biosynthetic enzymes and ancient energy-sensing kinases to mediate cell biological and pain responses.


Asunto(s)
Endocannabinoides , Glicéridos , Humanos , Endocannabinoides/metabolismo , Glicéridos/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Lipoproteína Lipasa/metabolismo , Ácidos Araquidónicos/metabolismo , Dolor
2.
J Sep Sci ; 46(22): e2300395, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37688356

RESUMEN

Interest has increased in the role of N-acyl amino acids in a variety of disease states and as potential pharmacotherapies. Recently, N-oleoyl glycine and N-oleoyl alanine have shown promise in reducing the rewarding effects of drugs of abuse and alleviating withdrawal signs in rodent models. Previously published methods for the quantitation of these analytes by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) in tissue were part of extensive lipidomic panels which may result in limited sensitivity and selectivity and also reported low recovery. Presented is a method for the extraction and HPLC-MS/MS analysis of N-oleoyl glycine and N-oleoyl alanine. The bias and precision of the assay were determined to be within ± 20%. The method was shown to be reliable and robust, with over 90% recovery for the low-level analytes. Increasing concentrations of N-oleoyl glycine and N-oleoyl alanine were quantitated in mouse brain and plasma following exogenous administration. This method was developed to serve to support studies investigating the pharmacokinetics and involvement of N-oleoyl glycine and N-oleoyl alanine in drug dependence and other diseases.


Asunto(s)
Glicina , Espectrometría de Masas en Tándem , Ratones , Animales , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Glicina/análisis , Alanina , Encéfalo
3.
J Pharmacol Exp Ther ; 366(1): 169-183, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29540562

RESUMEN

Although paclitaxel effectively treats various cancers, its debilitating peripheral neuropathic pain side effects often persist long after treatment has ended. Therefore, a compelling need exists for the identification of novel pharmacologic strategies to mitigate this condition. As inhibitors of monoacylglycerol lipase (MAGL), the primary hydrolytic enzyme of the endogenous cannabinoid, 2-arachidonyolglycerol, produces antinociceptive effects in numerous rodent models of pain, we investigated whether inhibitors of this enzyme (i.e., JZL184 and MJN110) would reverse paclitaxel-induced mechanical allodynia in mice. These drugs dose dependently reversed allodynia with respective ED50 values (95% confidence limit) of 8.4 (5.2-13.6) and 1.8 (1.0-3.3) mg/kg. Complementary genetic and pharmacologic approaches revealed that the antiallodynic effects of each drug require both cannabinoid receptors, CB1 and CB2 MJN110 reduced paclitaxel-mediated increased expression of monocyte chemoattractant protein-1 (MCP-1, CCL2) and phospho-p38 MAPK in dorsal root ganglia as well as MCP-1 in spinal dorsal horn. Whereas the antinociceptive effects of high dose JZL184 (40 mg/kg) underwent tolerance following 6 days of repeated dosing, repeated administration of a threshold dose (i.e., 4 mg/kg) completely reversed paclitaxel-induced allodynia. In addition, we found that the administration of MJN110 to control mice lacked intrinsic rewarding effects in the conditioned place preference (CPP) paradigm. However, it produced a CPP in paclitaxel-treated animals, suggesting a reduced paclitaxel-induced aversive state. Importantly, JZL184 did not alter the antiproliferative and apoptotic effects of paclitaxel in A549 and H460 non-small cell lung cancer cells. Taken together, these data indicate that MAGL inhibitors reverse paclitaxel-induced neuropathic pain without interfering with chemotherapeutic efficacy.


Asunto(s)
Antineoplásicos/efectos adversos , Inhibidores Enzimáticos/farmacología , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Monoacilglicerol Lipasas/antagonistas & inhibidores , Nocicepción/efectos de los fármacos , Paclitaxel/efectos adversos , Animales , Apoptosis/efectos de los fármacos , Benzodioxoles/farmacología , Benzodioxoles/uso terapéutico , Biomarcadores/metabolismo , Carbamatos/farmacología , Carbamatos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quimiocina CCL2/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/uso terapéutico , Humanos , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Inflamación/metabolismo , Masculino , Ratones , Fosfoproteínas/metabolismo , Piperidinas/farmacología , Piperidinas/uso terapéutico , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Succinimidas/farmacología , Succinimidas/uso terapéutico , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
4.
J Pharmacol Exp Ther ; 357(1): 145-56, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26791602

RESUMEN

Serious clinical liabilities associated with the prescription of opiates for pain control include constipation, respiratory depression, pruritus, tolerance, abuse, and addiction. A recognized strategy to circumvent these side effects is to combine opioids with other antinociceptive agents. The combination of opiates with the primary active constituent of cannabis (Δ(9)-tetrahydrocannabinol) produces enhanced antinociceptive actions, suggesting that cannabinoid receptor agonists can be opioid sparing. Here, we tested whether elevating the endogenous cannabinoid 2-arachidonoylglycerol through the inhibition of its primary hydrolytic enzyme monoacylglycerol lipase (MAGL), will produce opioid-sparing effects in the mouse chronic constriction injury (CCI) of the sciatic nerve model of neuropathic pain. The dose-response relationships of i.p. administration of morphine and the selective MAGL inhibitor 2,5-dioxopyrrolidin-1-yl 4-(bis(4-chlorophenyl)methyl)piperazine-1-carboxylate (MJN110) were tested alone and in combination at equieffective doses for reversal of CCI-induced mechanical allodynia and thermal hyperalgesia. The respective ED50 doses (95% confidence interval) of morphine and MJN110 were 2.4 (1.9-3.0) mg/kg and 0.43 (0.23-0.79) mg/kg. Isobolographic analysis of these drugs in combination revealed synergistic antiallodynic effects. Acute antinociceptive effects of the combination of morphine and MJN110 required µ-opioid, CB1, and CB2 receptors. This combination did not reduce gastric motility or produce subjective cannabimimetic effects in the drug discrimination assay. Importantly, combinations of MJN110 and morphine given repeatedly (i.e., twice a day for 6 days) continued to produce antiallodynic effects with no evidence of tolerance. Taken together, these findings suggest that MAGL inhibition produces opiate-sparing events with diminished tolerance, constipation, and cannabimimetic side effects.


Asunto(s)
Analgésicos Opioides/uso terapéutico , Carbamatos/farmacología , Inhibidores Enzimáticos/farmacología , Monoacilglicerol Lipasas/antagonistas & inhibidores , Neuralgia/tratamiento farmacológico , Succinimidas/farmacología , Animales , Ácidos Araquidónicos/metabolismo , Conducta Animal/efectos de los fármacos , Constricción Patológica/complicaciones , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Endocannabinoides/metabolismo , Glicéridos/metabolismo , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Morfina/administración & dosificación , Morfina/uso terapéutico , Neuralgia/inducido químicamente , Neuralgia/psicología , Receptor Cannabinoide CB1/efectos de los fármacos , Receptor Cannabinoide CB2/efectos de los fármacos , Receptores Opioides mu/efectos de los fármacos
5.
Cannabis Cannabinoid Res ; 9(2): 581-590, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36656312

RESUMEN

Introduction: Cannabidiol (CBD) has gained considerable public and scientific attention because of its known and potential medicinal properties, as well as its commercial success in a wide range of products. Although CBD lacks cannabimimetic intoxicating side effects in humans and fails to substitute for cannabinoid type-1 receptor (CB1R) agonists in laboratory animal models of drug discrimination paradigm, anecdotal reports describe it as producing a "pleasant" subjective effect in humans. Thus, we speculated that this phytocannabinoid may elicit distinct subjective effects. Accordingly, we investigated whether mice would learn to discriminate CBD from vehicle. Additionally, we examined whether CBD may act as a CB1R allosteric and whether it would elevate brain endocannabinoid concentrations. Materials and Methods: C57BL/6J mice underwent discrimination training of either CBD or the high-efficacy CB1R agonist CP55,940 from vehicle. Additionally, we examined whether CBD or the CB1R-positive allosteric modulator ZCZ011 would alter the CP55,940 discriminative cue. Finally, we tested whether an acute CBD injection would elevate endocannabinoid levels in brain, and also quantified blood and brain levels of CBD. Results: Mice failed to discriminate high doses of CBD from vehicle following 124 training days, though the same subjects subsequently acquired CP55,940 discrimination. In a second group of mice trained to discriminate CP55,940, CBD neither elicited substitution nor altered response rates. A single injection of 100 or 200 mg/kg CBD did not affect brain levels of endogenous cannabinoids and related lipids and resulted in high drug concentrations in blood and whole brain at 0.5 h and continued to increase at 3 h. Discussion: CBD did not engender an interoceptive stimulus, did not disrupt performance in a food-motivated operant task, and lacked apparent effectiveness in altering brain endocannabinoid levels or modulating the pharmacological effects of a CB1R agonist. These findings support the assertions that CBD lacks abuse liability and its acute administration does not appear to play a functional role in modulating key components of the endocannabinoid system in whole animals.


Asunto(s)
Cannabidiol , Humanos , Ratones , Animales , Cannabidiol/farmacología , Endocannabinoides , Ratones Endogámicos C57BL , Ciclohexanoles/farmacología , Agonistas de Receptores de Cannabinoides
6.
J Clin Neurosci ; 120: 82-86, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219304

RESUMEN

PURPOSE: To investigate the association between perioperative peripheral blood inflammatory markers and seizures in patients who have undergone meningioma resection. MATERIALS AND METHODS: A single neurosurgery tertiary centre blood bank database was screened to extract pre-operative and post-operative white cell count (WCC), neutrophils, lymphocytes, monocytes, platelets and neutrophil-lymphocyte ratio (NLR) and derived NLR (dNLR). All patients who underwent resection of meningioma from 2012 to 2020 were eligible. Patients were excluded if they had an inflammatory condition, peri-operative infection, medical illness or operative complication. RESULTS: 30 patients suffered pre-operative seizures only, 16 experienced de novo post-operative seizures within 1 year and 42 patients did not experience seizures throughout their treatment timeline. Patients with post-operative de novo seizures had a significantly higher WCC when compared those who never had a seizure (7.1 vs. 4.8x109/L, p =.048, 95 % 1.96 to 5.60). However, this difference of WCC was poorly predictive of de novo seizures at one year (AUC 0.61). dNLR was significantly higher in patients with continued post-operative seizures than in patients in which seizures were terminated with tumour resection (1.2 vs. 0.1, p =.035, 95 % 1.47 to 2.29). dNLR was predictive of seizures at one year with an 87.5 % sensitivity and 82.1 % specificity. CONCLUSIONS: There is a significantly higher post-operative systemic white cell count response in patients who suffered de novo seizures after meningioma resection. Peripheral blood markers have the potential to predict seizures in patients with meningioma.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/cirugía , Meningioma/complicaciones , Inflamación/complicaciones , Convulsiones/diagnóstico , Convulsiones/etiología , Linfocitos , Neutrófilos , Neoplasias Meníngeas/cirugía , Neoplasias Meníngeas/complicaciones , Fenotipo , Estudios Retrospectivos , Pronóstico
7.
Drug Alcohol Depend ; 259: 111276, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38676968

RESUMEN

BACKGROUND: As nicotine dependence represents a longstanding major public health issue, new nicotine cessation pharmacotherapies are needed. Administration of N-oleoyl glycine (OlGly), an endogenous lipid signaling molecule, prevents nicotine-induced conditioned place preference (CPP) through a peroxisome proliferator-activated receptor-alpha (PPARα) dependent mechanism, and also ameliorated withdrawal signs in nicotine-dependent mice. Pharmacological evidence suggests that the methylated analog of OlGly, N-oleoyl alanine (OlAla), has an increased duration of action and may offer translational benefit. Accordingly, OlAla was assessed in nicotine CPP and dependence assays as well as its pharmacokinetics compared to OlGly. METHODS: ICR female and male mice were tested in nicotine-induced CPP with and without the PPARα antagonist GW6471. OlAla was also assessed in nicotine-dependent mice following removal of nicotine minipumps: somatic withdrawal signs, thermal hyper-nociception and altered affective behavior (i.e., light/dark box). Finally, plasma and brain were collected after administration of OlGly or OlAla and analyzed by high-performance liquid chromatography tandem mass spectrometry. RESULTS: OlAla prevented nicotine-induced CPP, but this effect was not blocked by GW6471. OlAla attenuated somatic and affective nicotine withdrawal signs, but not thermal hyper-nociception in nicotine-dependent mice undergoing withdrawal. OlAla and OlGly showed similar time-courses in plasma and brain. CONCLUSIONS: The observation that both molecules showed similar pharmacokinetics argues against the notion that OlAla offers increased metabolic stability. Moreover, while these structurally similar lipids show efficacy in mouse models of reward and dependence, they reduce nicotine reward through distinct mechanisms.


Asunto(s)
Ratones Endogámicos ICR , Nicotina , Recompensa , Síndrome de Abstinencia a Sustancias , Tabaquismo , Animales , Síndrome de Abstinencia a Sustancias/metabolismo , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Ratones , Masculino , Nicotina/farmacología , Femenino , Tabaquismo/metabolismo , PPAR alfa/metabolismo , Alanina/farmacología , Alanina/análogos & derivados , Ácidos Oléicos/farmacología , Glicina/farmacología , Glicina/análogos & derivados , Aminopiridinas/farmacología , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Oxazoles , Tirosina/análogos & derivados
8.
Brain Res ; 1817: 148483, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37442250

RESUMEN

Nicotine and tobacco-related deaths remains a leading cause of preventable death and disease in the United States. Several studies indicate that modulation of the endocannabinoid system, primarily of the endocannabinoid 2-Arachidonoylglycerol (2-AG), alters nicotinic dependence behaviors in rodents. This study, using transgenic knock-out (KO) mice, evaluated the role of the two 2-AG biosynthesis enzymes, (Diacylglycerol lipase-α) DAGL-α and DAGL-ß in spontaneous nicotine withdrawal. DAGL-α deletion prevents somatic and affective signs of nicotine withdrawal, while DAGL-ß deletion plays a role in hyperalgesia due to nicotine withdrawal. These results suggest a differential role of these enzymes in the various signs of nicotine withdrawal. Our behavioral findings relate to the distribution of these enzymes with DAGL-ß being highly expressed in macrophages and DAGL-α in neurons. This study offers new potential targets for smoking cessation therapies.


Asunto(s)
Síndrome de Abstinencia a Sustancias , Tabaquismo , Ratones , Animales , Nicotina , Lipoproteína Lipasa , Endocannabinoides , Ratones Noqueados
9.
Neuropharmacology ; 185: 108437, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33316279

RESUMEN

BACKGROUND: Antagonism of peripheral opioid receptors by methylnaltrexone (MNTX) was recently proposed as a potential mechanism to attenuate the development of opioid analgesic tolerance based on experiments conducted in mice. However, reports indicate that MNTX is demethylated to naltrexone (NTX) in mice, and NTX may subsequently cross the blood-brain barrier to antagonize centrally-mediated opioid effects. The goal of this study was to determine whether MNTX alters centrally-mediated behaviors elicited by the opioid analgesics, morphine and oxycodone, and to quantify concentrations of MNTX and NTX in blood and brain following their administration in mice. METHODS: Combinations of MNTX and morphine were tested under acute and chronic conditions in thermal nociceptive assays. Effects of MNTX and NTX pretreatment were assessed in an oxycodone discrimination operant procedure. Blood and brain concentrations of these antagonists were quantified after their administration using liquid chromatography-mass spectrometry. RESULTS: MNTX dose-dependently attenuated acute and chronic morphine antinociception. MNTX and NTX dose-dependently antagonized the discriminative stimulus effects of oxycodone. MNTX and NTX were detected in both blood and brain after administration of MNTX, confirming its demethylation and demonstrating that MNTX itself can cross the blood-brain barrier. CONCLUSIONS: These results provide converging behavioral and analytical evidence that MNTX administration in mice attenuates centrally-mediated effects produced by opioid analgesics and results in functional concentrations of MNTX and NTX in blood and brain. Collectively, these findings indicate that MNTX cannot be administered systemically in mice for making inferences that its effects are peripherally restricted.


Asunto(s)
Analgésicos Opioides/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Morfina/farmacología , Naltrexona/análogos & derivados , Antagonistas de Narcóticos/farmacología , Oxicodona/farmacología , Analgésicos Opioides/antagonistas & inhibidores , Animales , Barrera Hematoencefálica/metabolismo , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Endogámicos C57BL , Morfina/antagonistas & inhibidores , Naltrexona/metabolismo , Naltrexona/farmacología , Antagonistas de Narcóticos/metabolismo , Oxicodona/antagonistas & inhibidores , Dimensión del Dolor/efectos de los fármacos , Dimensión del Dolor/métodos , Compuestos de Amonio Cuaternario/metabolismo , Compuestos de Amonio Cuaternario/farmacología
10.
J Med Chem ; 62(10): 5049-5062, 2019 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-31050898

RESUMEN

The first generation of CB1 positive allosteric modulators (e.g., ZCZ011) featured a 3-nitroalkyl-2-phenyl-indole structure. Although a small number of drugs include the nitro group, it is generally not regarded as being "drug-like", and this is particularly true for aliphatic nitro groups. There are very few case studies where an appropriate bioisostere replaced a nitro group that had a direct role in binding. This may be indicative of the difficulty of replicating its binding interactions. Herein, we report the design and synthesis of ligands targeting the allosteric binding site on the CB1 cannabinoid receptor, in which a CF3 group successfully replaced the aliphatic NO2. In general, the CF3-bearing compounds were more potent than their NO2 equivalents and also showed improved in vitro metabolic stability. The CF3 analogue (1) with the best balance of properties was selected for further pharmacological evaluation. Pilot in vivo studies showed that (±)-1 has similar activity to (±)-ZCZ011, with both showing promising efficacy in a mouse model of neuropathic pain.


Asunto(s)
Nitrocompuestos/síntesis química , Nitrocompuestos/farmacología , Receptor Cannabinoide CB1/efectos de los fármacos , Regulación Alostérica/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Sitios de Unión , AMP Cíclico/metabolismo , Diseño de Fármacos , Isomerismo , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Neuralgia/tratamiento farmacológico , Neuralgia/psicología , Nitrocompuestos/farmacocinética , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad
11.
Neuropharmacology ; 148: 320-331, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29567093

RESUMEN

Cigarette smokers with brain damage involving the insular cortex display cessation of tobacco smoking, suggesting that this region may contribute to nicotine addiction. In the present study, we speculated that molecules in the insular cortex that are sensitive to experimental traumatic brain injury (TBI) in mice might provide leads to ameliorate nicotine addiction. Using targeted lipidomics, we found that TBI elicited substantial increases of a largely uncharacterized lipid, N-acyl-glycine, N-oleoyl-glycine (OlGly), in the insular cortex of mice. We then evaluated whether intraperitoneal administration of OlGly would alter withdrawal responses in nicotine-dependent mice as well as the rewarding effects of nicotine, as assessed in the conditioned place preference paradigm (CPP). Systemic administration of OlGly reduced mecamylamine-precipitated withdrawal responses in nicotine-dependent mice and prevented nicotine CPP. However, OlGly did not affect morphine CPP, demonstrating a degree of selectivity. Our respective in vitro and in vivo observations that OlGly activated peroxisome proliferator-activated receptor alpha (PPAR-α) and the PPAR-α antagonist GW6471 prevented the OlGly-induced reduction of nicotine CPP in mice suggests that this lipid acts as a functional PPAR-α agonist to attenuate nicotine reward. These findings raise the possibility that the long chain fatty acid amide OlGly may possess efficacy in treating nicotine addiction.


Asunto(s)
Glicina/análogos & derivados , Nicotina/antagonistas & inhibidores , Ácidos Oléicos/farmacología , Recompensa , Síndrome de Abstinencia a Sustancias/prevención & control , Animales , Lesiones Traumáticas del Encéfalo/metabolismo , Corteza Cerebral/metabolismo , Condicionamiento Clásico/efectos de los fármacos , Glicina/antagonistas & inhibidores , Glicina/farmacología , Masculino , Mecamilamina/farmacología , Ratones , Nicotina/metabolismo , Nicotina/farmacología , Ácidos Oléicos/antagonistas & inhibidores , Oxazoles/farmacología , PPAR alfa/agonistas , PPAR alfa/antagonistas & inhibidores , Tabaquismo/psicología , Tirosina/análogos & derivados , Tirosina/farmacología
12.
Neuropharmacology ; 125: 80-86, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28673548

RESUMEN

Substantial challenges exist for investigating the cannabinoid receptor type 1 (CB1)-mediated discriminative stimulus effects of the endocannabinoids, 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (anandamide; AEA), compared with exogenous CB1 receptor agonists, such as Δ9-tetrahydrocannabinol (THC) and the synthetic cannabinoid CP55,940. Specifically, each endocannabinoid is rapidly degraded by the respective hydrolytic enzymes, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH). Whereas MAGL inhibitors partially substitute for THC and fully substitute for CP55,940, FAAH inhibitors do not substitute for either drug. Interestingly, combined FAAH-MAGL inhibition results in full THC substitution, and the dual FAAH-MAGL inhibitor SA-57 serves as its own discriminative training stimulus. Because MAGL inhibitors fully substitute for SA-57, we tested whether the selective MAGL inhibitor MJN110 would serve as a training stimulus. Twelve of 13 C57BL/6J mice learned to discriminate MJN110 from vehicle, and the CB1 receptor antagonist rimonabant dose-dependently blocked its discriminative stimulus. CP55,940, SA-57, and another MAGL inhibitor JZL184, fully substituted for MJN110. In contrast, the FAAH inhibitor PF-3845 failed to substitute for the MJN110 discriminative stimulus, but produced a 1.6 (1.1-2.2; 95% confidence interval) leftward shift in the MJN110 dose-response curve. Inhibitors of other relevant enzymes (i.e., ABHD6, COX-2) and nicotine did not engender substitution. Diazepam partially substituted for MJN110, but rimonabant failed to block this partial effect. These findings suggest that MAGL normally throttles 2-AG stimulation of CB1 receptors to a magnitude insufficient to produce cannabimimetic subjective effects. Accordingly, inhibitors of this enzyme may release this endogenous brake producing effects akin to those produced by exogenously administered cannabinoids.


Asunto(s)
Carbamatos/farmacología , Discriminación en Psicología/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Monoacilglicerol Lipasas/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo , Succinimidas/farmacología , Acetamidas/farmacología , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Animales , Benzodioxoles/farmacología , Moduladores de Receptores de Cannabinoides/farmacología , Ciclohexanoles/farmacología , Ciclooxigenasa 2/metabolismo , Discriminación en Psicología/fisiología , Relación Dosis-Respuesta a Droga , Dronabinol/farmacología , Masculino , Ratones Endogámicos C57BL , Monoacilglicerol Lipasas/metabolismo , Piperidinas/farmacología , Pirazoles/farmacología , Rimonabant
13.
J Anal Toxicol ; 39(5): 353-8, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25737338

RESUMEN

A high-performance liquid chromatography tandem mass spectrometry method was developed for the detection and quantification of 6-methyl-3-(2-nitro-1-(thiophen-2-yl)propyl)-2-phenyl-1H-indole (ZCZ-011) using 2-phenylindole as the internal standard (ISTD). ZCZ-011 was synthesized as a possible positive allosteric modulator with the CB1 cannabinoid receptor. The analytical method employs a rapid extraction technique using Clean Screen FASt™ columns with a Positive Pressure Manifold. FASt™ columns were originally developed for urine drug analysis but we have successfully adapted them to the extraction of brain tissue. Chromatographic separation was performed on a Restek Allure Biphenyl 5 µ, 100 × 3.2 mm column (Bellefonte, PA). The mobile phase consisted of 1:9 deionized water with 10 mmol ammonium acetate and 0.1% formic acid-methanol. The following transition ions (m/z) were monitored for ZCZ-011: 363 > 207 and 363 > 110 and for the ISTD: 194 > 165 and 194 > 89. The FASt™ columns lowered and stabilized the ion suppression over the linear range of the assay (40-4,000 ng/g). The method was evaluated for recovery, ion suppression, accuracy/bias, intraday and interday precision, bench-top stability, freeze-thaw and post-preparative stability. The method was successfully applied to brain tissue from C57BL/6J mice that received intraperitoneal (i.p.) injections with 40 mg/kg of ZCZ-011 or vehicle.


Asunto(s)
Encéfalo/metabolismo , Cromatografía Líquida de Alta Presión , Indoles/análisis , Receptor Cannabinoide CB1/aislamiento & purificación , Espectrometría de Masas en Tándem , Tiofenos/análisis , Animales , Calibración , Cromatografía Líquida de Alta Presión/normas , Indoles/administración & dosificación , Indoles/metabolismo , Inyecciones Intraperitoneales , Límite de Detección , Modelos Lineales , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Receptor Cannabinoide CB1/metabolismo , Estándares de Referencia , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/normas , Tiofenos/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA