Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 216: 112195, 2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33823368

RESUMEN

Organic fertilizer usage is been introduced into agricultural practices for preventing the damaging effects of chemical fertilizers. Present study investigated the beneficial role of organic fertilizer (nano-vermicompost) on the growth, oxidative stress parameters, antioxidant and nitrogen metabolism, osmolyte accumulation and mineral elements in tomato under drought stress. Drought stress resulted in reduced growth and biomass accumulation by triggering oxidative stress due to excess accumulation of reactive oxygen species (ROS) and reduced mineral uptake. Application of nano-vermicompost proved significantly beneficial in improving growth and mitigating the drought induced growth decline. Nano-vermicompost increased growth and dry matter content and ameliorated the decline in chlorophyll contents, photosynthesis and PSII activity more significantly at higher concentration (100 mg kg-1 soil). ROS accumulation was significantly reduced by nano-vermicompost application thereby enhancing the membrane stability under normal as well as drought conditions. Furthermore, lipid peroxidation and activities of protease and lypoxygenase were significantly reduced. Drought up-regulated antioxidant system and application of nano-vermicompost further enhanced the activities of antioxidant enzymes and the contents of non-enzymatic antioxidant components. Accumulation of osmolytes including proline, glycine betaine and sugars increased significantly due to nano-vermicompost application. Besides, decline in the activity of nitrate reductase and content of essential mineral elements like nitrogen, potassium and phosphorous was also ameliorated by nano-vermicompost application.

2.
Environ Sci Pollut Res Int ; 28(33): 45276-45295, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33860891

RESUMEN

Drought is a major environmental threat limiting worldwide crop production. Drought stress affects the tobacco quality and yield; therefore, the current research studies were undertaken to investigate the effectiveness of arbuscular mycorrhizal fungi (AMF) under drought stress on morphological and biochemical attributes of tobacco (Nicotiana tabacum L. variety Yunyan 87). AMF-inoculated and AMF-non-inoculated plants were maintained in a greenhouse and irrigated with a half-strength Hoagland solution (100 mL pot-1) once a week. At harvesting, the plant height, number of leaves, fresh and dry weights, mycorrhizal colonization, and concentration of leaf photosynthetic pigments and photosynthetic rate were measured. Data were statistically analyzed by ANOVA and the principal component (PCA) analyses. The effect of root colonization significantly increased biomass production and essential oil accumulation. Results showed that drought at mild and severe stressed levels significantly affected tobacco growth by decreasing plant height, biomass, and a number of leaves. However, inoculation of AMF considerably increased plant height, fresh and dry weights, chlorophyll (a, b), total chlorophyll, and carotenoid content by 43.84, 40.87 and 49.76, 185.29, 325.60, 173.12, and 211.49%, respectively. Compared with non-inoculated plants, AMF inoculation significantly enhanced the essential oil yield and the uptake of nitrogen, phosphorus, and potassium with the increase of 257.36, 102.71, and 90.76, 62.32, and 84.51%, respectively, in mild drought + AMF-treated plants. Similarly, the antioxidant enzymatic activity, glomalin-related soil protein (GRSP), and accumulation of phenols and flavonoids and osmolytes content were also significantly improved in inoculated plants under drought stress. Additionally, AMF inoculation significantly upregulated the lipoxygenase (LOX) and phenylalanine ammonia-lyase (PAL) enzymes by 197 and 298.44% under drought conditions. These findings depicted that the symbiotic association of AMF improved the overall growth pattern and secondary metabolism in tobacco plants under severe drought stress conditions and may be used as an approaching source of important drugs in the field of pharmacology.


Asunto(s)
Micorrizas , Aceites Volátiles , Sequías , Metabolismo Secundario , Nicotiana
3.
Phytochemistry ; 181: 112582, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33246307

RESUMEN

Salinity is a major cause of crop losses worldwide. Acetylcholine (ACh) can ameliorate the adverse effects of abiotic stresses on plant growth, including salinity stress; however, the underlying molecular mechanisms of this process are unclear. Here, seedlings of Nicotiana benthamiana grown under normal conditions or exposed to 150 mmol L-1 NaCl salinity stress were then treated with a root application of 10 µM ACh. Exogenous ACh application resulted in the downregulation of the activity of the antioxidant enzymes, ascorbate peroxidase, and catalase. ACh-treated plants had lower levels of reactive oxygen species, including the superoxide anion radical and hydrogen peroxide. Transcriptome analysis indicated that ACh treatment under salt stress promoted the differential expression of 658 genes in leaves of N. benthamiana (527 were upregulated and 131 were downregulated). Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that exogenous ACh application was associated with a substantial increase in the transcripts of genes related to cell wall peroxidases, xyloglucan endotransglucosylases or hydrolases, and expansins, indicating that ACh activates cell wall biosynthesis in salt-stressed plants. ACh also enhanced the expression of genes associated with the auxin, gibberellin, brassinosteroid, and salicylic acid signalling pathways, indicating that ACh induces the activation of these pathways under salt stress. Collectively, these findings indicate that ACh-induced salt tolerance in N. benthamiana seedlings is mediated by the inhibition of antioxidant enzymes, activation of cell wall biosynthesis, and hormone signalling pathways. Stress-induced genes involved in osmotic regulation and oxidation resistance were induced by ACh under salt stress. The genes whose transcript levels were elevated by ACh treatment in salt-stressed N. benthamiana could be used as molecular markers of the physiological status of plants under salt stress.


Asunto(s)
Nicotiana , Tolerancia a la Sal , Acetilcolina , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Salinidad , Tolerancia a la Sal/genética , Estrés Fisiológico , Nicotiana/genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA