Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 42(7): 2227-41, 2003 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-12665356

RESUMEN

Previous studies of 5,10,15,20-tetraarylporphyrins have shown that the barrier for meso aryl-porphyrin rotation (DeltaG++(ROT)) varies as a function of the core substituent M and is lower for a small metal (M = Ni) compared to a large metal (M = Zn) and for a dication (M = 4H(2+)) versus a free base porphyrin (M = 2H). This has been attributed to changes in the nonplanar distortion of the porphyrin ring and the deformability of the macrocycle caused by the core substituent. In the present work, X-ray crystallography, molecular mechanics (MM) calculations, and variable temperature (VT) (1)H NMR spectroscopy are used to examine the relationship between the aryl-porphyrin rotational barrier and the core substituent M in some novel 2,3,5,7,8,10,12,13,15,17,18,20-dodecaarylporphyrins (DArPs), and specifically in some 5,10,15,20-tetraaryl-2,3,7,8,12,13,17,18-octaphenylporphyrins (TArOPPs), where steric crowding of the peripheral groups always results in a very nonplanar macrocycle. X-ray structures of DArPs indicate differences in the nonplanar conformation of the macrocycle as a function of M, with saddle conformations being observed for M = Zn, 2H or M = 4H(2+) and saddle and/or ruffle conformations for M = Ni. VT NMR studies show that the effect of protonation in the TArOPPs is to increase DeltaG++(ROT), which is the opposite of the effect seen for the TArPs, and MM calculations also predict a strikingly high barrier for the TArOPPs when M = 4H(2+). These and other findings suggest that the aryl-porphyrin rotational barriers in the DArPs are closely linked to the deformability of the macrocycle along a nonplanar distortion mode which moves the substituent being rotated out of the porphyrin plane.


Asunto(s)
Modelos Moleculares , Porfirinas/química , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Metaloporfirinas/química , Conformación Molecular , Estructura Molecular , Termodinámica
2.
Inorg Chem ; 41(25): 6673-87, 2002 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-12470062

RESUMEN

With the aim of better understanding the electronic and structural factors which govern electron-transfer processes in porphyrins, the electrochemistry of 29 nickel(II) porphyrins has been examined in dichloromethane containing either 0.1 M tetra-n-butylammonium perchlorate (TBAP) or tetra-n-butylammonium hexafluorophosphate (TBAPF(6)) as supporting electrolyte. Half-wave potentials for the first oxidation and first reduction are only weakly dependent on the supporting electrolyte, but E(1/2) for the second oxidation varies considerably with the type of supporting electrolyte. E(1/2) values for the first reduction to give a porphyrin pi-anion radical are effected in large part by the electronic properties of the porphyrin macrocycle substituents, while half-wave potentials for the first oxidation to give a pi-cation radical are affected by the substituents as well as by nonplanar deformations of the porphyrin macrocycle. The potential difference between the first and second oxidations (Delta/Ox(2) - Ox(1)/) is highly variable among the 29 investigated compounds and ranges from 0 mV (two overlapped oxidations) to 460 mV depending on the macrocycle substituents and the anion of the supporting electrolyte. The magnitude of Delta/Ox(2) - Ox(1)/ is generally smaller for compounds with very electron-withdrawing substituents and when TBAP is used as the supporting electrolyte. This behavior is best explained in terms of differences in the binding strengths of anions from the supporting electrolyte (ClO(4)(-) or PF(6)(-)) to the doubly oxidized species. A closer analysis suggests two factors which are important in modulating Delta/Ox(2) - Ox(1)/ and thus the binding affinity of the anion to the porphyrin dication. One is the type of pi-cation radical (a proxy for the charge distribution in the dication), and the other is the conformation of the porphyrin macrocycle (either planar or nonplanar). These findings imply that the redox behavior of porphyrins can be selectively tuned to display separate or overlapped oxidation processes.


Asunto(s)
Metaloporfirinas/química , Metaloporfirinas/síntesis química , Níquel/química , Sitios de Unión , Cristalografía por Rayos X , Electroquímica , Modelos Químicos , Conformación Molecular , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA