Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 632(8027): 1082-1091, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39143224

RESUMEN

T-lineage acute lymphoblastic leukaemia (T-ALL) is a high-risk tumour1 that has eluded comprehensive genomic characterization, which is partly due to the high frequency of noncoding genomic alterations that result in oncogene deregulation2,3. Here we report an integrated analysis of genome and transcriptome sequencing of tumour and remission samples from more than 1,300 uniformly treated children with T-ALL, coupled with epigenomic and single-cell analyses of malignant and normal T cell precursors. This approach identified 15 subtypes with distinct genomic drivers, gene expression patterns, developmental states and outcomes. Analyses of chromatin topology revealed multiple mechanisms of enhancer deregulation that involve enhancers and genes in a subtype-specific manner, thereby demonstrating widespread involvement of the noncoding genome. We show that the immunophenotypically described, high-risk entity of early T cell precursor ALL is superseded by a broader category of 'early T cell precursor-like' leukaemia. This category has a variable immunophenotype and diverse genomic alterations of a core set of genes that encode regulators of hematopoietic stem cell development. Using multivariable outcome models, we show that genetic subtypes, driver and concomitant genetic alterations independently predict treatment failure and survival. These findings provide a roadmap for the classification, risk stratification and mechanistic understanding of this disease.


Asunto(s)
Genoma Humano , Genómica , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Niño , Femenino , Humanos , Masculino , Cromatina/genética , Cromatina/metabolismo , Elementos de Facilitación Genéticos/genética , Epigenómica , Regulación Leucémica de la Expresión Génica , Genoma Humano/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Análisis de la Célula Individual , Transcriptoma/genética , Linfocitos T/citología , Linfocitos T/patología
2.
Genes Dev ; 32(7-8): 555-567, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29654059

RESUMEN

Although peroxisome proliferator-activated receptor-γ (PPARγ) coactivator 1α (PGC-1α) is a well-established transcriptional coactivator for the metabolic adaptation of mammalian cells to diverse physiological stresses, the molecular mechanism by which it functions is incompletely understood. Here we used in vitro binding assays, X-ray crystallography, and immunoprecipitations of mouse myoblast cell lysates to define a previously unknown cap-binding protein 80 (CBP80)-binding motif (CBM) in the C terminus of PGC-1α. We show that the CBM, which consists of a nine-amino-acid α helix, is critical for the association of PGC-1α with CBP80 at the 5' cap of target transcripts. Results from RNA sequencing demonstrate that the PGC-1α CBM promotes RNA synthesis from promyogenic genes. Our findings reveal a new conduit between DNA-associated and RNA-associated proteins that functions in a cap-binding protein surveillance mechanism, without which efficient differentiation of myoblasts to myotubes fails to occur.


Asunto(s)
Complejo Proteico Nuclear de Unión a la Caperuza/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/química , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Activación Transcripcional , Animales , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Diferenciación Celular , Humanos , Células MCF-7 , Ratones , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Caperuzas de ARN/metabolismo , Proteínas de Unión al ARN , Transcripción Genética
3.
Blood ; 141(11): 1293-1307, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977101

RESUMEN

Familial aggregation of Hodgkin lymphoma (HL) has been demonstrated in large population studies, pointing to genetic predisposition to this hematological malignancy. To understand the genetic variants associated with the development of HL, we performed whole genome sequencing on 234 individuals with and without HL from 36 pedigrees that had 2 or more first-degree relatives with HL. Our pedigree selection criteria also required at least 1 affected individual aged <21 years, with the median age at diagnosis of 21.98 years (3-55 years). Family-based segregation analysis was performed for the identification of coding and noncoding variants using linkage and filtering approaches. Using our tiered variant prioritization algorithm, we identified 44 HL-risk variants in 28 pedigrees, of which 33 are coding and 11 are noncoding. The top 4 recurrent risk variants are a coding variant in KDR (rs56302315), a 5' untranslated region variant in KLHDC8B (rs387906223), a noncoding variant in an intron of PAX5 (rs147081110), and another noncoding variant in an intron of GATA3 (rs3824666). A newly identified splice variant in KDR (c.3849-2A>C) was observed for 1 pedigree, and high-confidence stop-gain variants affecting IRF7 (p.W238∗) and EEF2KMT (p.K116∗) were also observed. Multiple truncating variants in POLR1E were found in 3 independent pedigrees as well. Whereas KDR and KLHDC8B have previously been reported, PAX5, GATA3, IRF7, EEF2KMT, and POLR1E represent novel observations. Although there may be environmental factors influencing lymphomagenesis, we observed segregation of candidate germline variants likely to predispose HL in most of the pedigrees studied.


Asunto(s)
Enfermedad de Hodgkin , Humanos , Adulto Joven , Adulto , Enfermedad de Hodgkin/genética , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Codón sin Sentido , Secuenciación Completa del Genoma , Linaje , Proteínas de Ciclo Celular/genética
4.
Genes Dev ; 31(14): 1483-1493, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28827400

RESUMEN

While microRNAs (miRNAs) regulate the vast majority of protein-encoding transcripts, little is known about how miRNAs themselves are degraded. We recently described Tudor-staphylococcal/micrococcal-like nuclease (TSN)-mediated miRNA decay (TumiD) as a cellular pathway in which the nuclease TSN promotes the decay of miRNAs that contain CA and/or UA dinucleotides. While TSN-mediated degradation of either protein-free or AGO2-loaded miRNAs does not require the ATP-dependent RNA helicase UPF1 in vitro, we report here that cellular TumiD requires UPF1. Results from experiments using AGO2-loaded miRNAs in duplex with target mRNAs indicate that UPF1 can dissociate miRNAs from their mRNA targets, making the miRNAs susceptible to TumiD. miR-seq (deep sequencing of miRNAs) data reveal that the degradation of ∼50% of candidate TumiD targets in T24 human urinary bladder cancer cells is augmented by UPF1. We illustrate the physiological relevance by demonstrating that UPF1-augmented TumiD promotes the invasion of T24 cells in part by degrading anti-invasive miRNAs so as to up-regulate the expression of proinvasive proteins.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Endorribonucleasas/metabolismo , MicroARNs/metabolismo , ARN Helicasas/metabolismo , Estabilidad del ARN , Transactivadores/metabolismo , Línea Celular Tumoral , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , MicroARNs/química , Análisis de Secuencia de ARN , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo
5.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L604-L617, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38442187

RESUMEN

Postnatal lung development results in an increasingly functional organ prepared for gas exchange and pathogenic challenges. It is achieved through cellular differentiation and migration. Changes in the tissue architecture during this development process are well-documented and increasing cellular diversity associated with it are reported in recent years. Despite recent progress, transcriptomic and molecular pathways associated with human postnatal lung development are yet to be fully understood. In this study, we investigated gene expression patterns associated with healthy pediatric lung development in four major enriched cell populations (epithelial, endothelial, and nonendothelial mesenchymal cells, along with lung leukocytes) from 1-day-old to 8-yr-old organ donors with no known lung disease. For analysis, we considered the donors in four age groups [less than 30 days old neonates, 30 days to < 1 yr old infants, toddlers (1 to < 2 yr), and children 2 yr and older] and assessed differentially expressed genes (DEG). We found increasing age-associated transcriptional changes in all four major cell types in pediatric lung. Transition from neonate to infant stage showed highest number of DEG compared with the number of DEG found during infant to toddler- or toddler to older children-transitions. Profiles of differential gene expression and further pathway enrichment analyses indicate functional epithelial cell maturation and increased capability of antigen presentation and chemokine-mediated communication. Our study provides a comprehensive reference of gene expression patterns during healthy pediatric lung development that will be useful in identifying and understanding aberrant gene expression patterns associated with early life respiratory diseases.NEW & NOTEWORTHY This study presents postnatal transcriptomic changes in major cell populations in human lung, namely endothelial, epithelial, mesenchymal cells, and leukocytes. Although human postnatal lung development continues through early adulthood, our results demonstrate that greatest transcriptional changes occur in first few months of life during neonate to infant transition. These early transcriptional changes in lung parenchyma are particularly notable for functional maturation and activation of alveolar type II cell genes.


Asunto(s)
Pulmón , Transcriptoma , Humanos , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , Recién Nacido , Lactante , Niño , Preescolar , Masculino , Femenino , Análisis de Secuencia de ARN/métodos , Células Epiteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Perfilación de la Expresión Génica
6.
J Neurol Neurosurg Psychiatry ; 95(4): 316-324, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-37827570

RESUMEN

BACKGROUND: Cognitive and behavioural dysfunction may occur in people with motor neuron disease (MND), with some studies suggesting an association with the C9ORF72 repeat expansion. Their onset and progression, however, is poorly understood. We explored how cognition and behaviour change over time, and whether demographic, clinical and genetic factors impact these changes. METHODS: Participants with MND were recruited through the Phenotype-Genotype-Biomarker study. Every 3-6 months, the Edinburgh Cognitive and Behavioural ALS Screen (ECAS) was used to assess amyotrophic lateral sclerosis (ALS) specific (executive functioning, verbal fluency, language) and ALS non-specific (memory, visuospatial) functions. Informants reported on behaviour symptoms via semi-structured interview. RESULTS: Participants with neuropsychological data at ≥3 visits were included (n=237, mean age=59, 60% male), of which 18 (8%) were C9ORF72 positive. Baseline cognitive impairment was apparent in 18 (8%), typically in ALS specific domains, and associated with lower education, but not C9ORF72 status. Cognition, on average, remained stable over time, with two exceptions: (1) C9ORF72 carriers declined in all ECAS domains, (2) 8%-9% of participants with baseline cognitive impairment further declined, primarily in the ALS non-specific domain, which was associated with less education. Behavioural symptoms were uncommon. CONCLUSIONS: In this study, cognitive dysfunction was less common than previously reported and remained stable over time for most. However, cognition declines longitudinally in a small subset, which is not entirely related to C9ORF72 status. Our findings raise questions about the timing of cognitive impairment in MND, and whether it arises during early clinically manifest disease or even prior to motor manifestations.


Asunto(s)
Esclerosis Amiotrófica Lateral , Disfunción Cognitiva , Enfermedad de la Neurona Motora , Humanos , Masculino , Persona de Mediana Edad , Femenino , Esclerosis Amiotrófica Lateral/diagnóstico , Proteína C9orf72/genética , Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/complicaciones , Disfunción Cognitiva/genética , Disfunción Cognitiva/complicaciones , Cognición/fisiología , Pruebas Neuropsicológicas
7.
Pediatr Blood Cancer ; 71(10): e31208, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39034595

RESUMEN

BACKGROUND: Survival data for recurrent pediatric atypical teratoid rhabdoid tumor (ATRT) and its association to molecular groups are extremely limited. METHODS: Single-institution retrospective study of 64 children less than 21 years old with recurrent or treatment-refractory (progressive disease [PD]) ATRT treated at St. Jude Hospital from January 2000 to December 2020. Demographic, clinicopathologic, treatment, molecular grouping (SHH, TYR, and MYC) and germline data were collected. Progression-free survival (PFS2: time from PD to subsequent first progression) and overall survival (OSpostPD: time from PD to death/last follow-up) were estimated by Kaplan-Meier analysis. RESULTS: Median age at and time from initial diagnosis to PD were 2.1 years (range: 0.5-17.9 years) and 5.4 months (range: 0.5-125.6 months), respectively. Only five of 64 children (7.8%) are alive at median follow-up of 10.9 (range: 4.2-18.1) years from PD. The 2/5-year PFS2 and OSpostPD were 3.1% (±1.8%)/1.6% (±1.1%) and 20.3% (±4.8%)/7.3% (±3.5%), respectively. Children with TYR group (n = 10) had a better OSpostPD compared to those with MYC (n = 11) (2-year survival estimates: 60.0% ± 14.3% vs. 18.2% ± 9.5%; p = .019), or those with SHH (n = 21; 4.8% ± 3.3%; p = .014). In univariate analyses, OSpostPD was better with older age at diagnosis (p = .037), female gender (p = .008), and metastatic site of PD compared to local or combined sites of PD (p < .001). Two-year OSpostPD for patients receiving any salvage therapy (n = 39) post PD was 33.3% ± 7.3%. CONCLUSIONS: Children with recurrent/refractory ATRT have dismal outcomes. Older age at diagnosis, female gender, TYR group, and metastatic site of PD were associated with relatively longer survival in our study.


Asunto(s)
Recurrencia Local de Neoplasia , Tumor Rabdoide , Teratoma , Humanos , Tumor Rabdoide/mortalidad , Tumor Rabdoide/terapia , Tumor Rabdoide/patología , Masculino , Femenino , Niño , Preescolar , Estudios Retrospectivos , Lactante , Adolescente , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/mortalidad , Teratoma/mortalidad , Teratoma/patología , Teratoma/terapia , Tasa de Supervivencia , Estudios de Seguimiento , Pronóstico , Recién Nacido , Biomarcadores de Tumor/genética
8.
Bioorg Med Chem Lett ; 93: 129433, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37557923

RESUMEN

The α7 nicotinic acetylcholine receptor is a calcium permeable, ligand-gated ion channel that modulates synaptic transmission in the hippocampus, thalamus, and cerebral cortex. Previously disclosed work described PNU-120596 that acts as a powerful positive allosteric modulator of the α7 nicotinic acetylcholine receptor. The initial structure-activity relationships around PNU-120596 were gleaned from screening a large thiazole library. Independent systematic examination of the aryl and heteroaryl groups resulted in compounds with enhanced potency and improved physico-chemical properties culminating in the identification of 16 (PHA-758454). In the presence of acetylcholine, 16 enhanced evoked currents in rat hippocampal neurons. In a rat model of impaired sensory gating, treatment with 16 led to a reversal of the gating deficit in a dose-dependent manner. These results demonstrate that aryl heteroaryl ureas, like compound 16, may be useful tools for continued exploration of the unique biology of the α7 nicotinic acetylcholine receptor.


Asunto(s)
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa 7 , Ratas , Animales , Hipocampo , Compuestos de Fenilurea/química , Isoxazoles/farmacología , Isoxazoles/química , Regulación Alostérica
9.
Circ Res ; 127(6): 827-846, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32611237

RESUMEN

RATIONALE: Increased protein synthesis of profibrotic genes is a common feature in cardiac fibrosis and heart failure. Despite this observation, critical factors and molecular mechanisms for translational control of profibrotic genes during cardiac fibrosis remain unclear. OBJECTIVE: To investigate the role of a bifunctional ARS (aminoacyl-tRNA synthetase), EPRS (glutamyl-prolyl-tRNA synthetase) in translational control of cardiac fibrosis. METHODS AND RESULTS: Results from reanalyses of multiple publicly available data sets of human and mouse heart failure, demonstrated that EPRS acted as an integrated node among the ARSs in various cardiac pathogenic processes. We confirmed that EPRS was induced at mRNA and protein levels (≈1.5-2.5-fold increase) in failing hearts compared with nonfailing hearts using our cohort of human and mouse heart samples. Genetic knockout of one allele of Eprs globally (Eprs+/-) using CRISPR-Cas9 technology or in a Postn-Cre-dependent manner (Eprsflox/+; PostnMCM/+) strongly reduces cardiac fibrosis (≈50% reduction) in isoproterenol-, transverse aortic constriction-, and myocardial infarction (MI)-induced heart failure mouse models. Inhibition of EPRS using a PRS (prolyl-tRNA synthetase)-specific inhibitor, halofuginone, significantly decreases translation efficiency (TE) of proline-rich collagens in cardiac fibroblasts as well as TGF-ß (transforming growth factor-ß)-activated myofibroblasts. Overexpression of EPRS increases collagen protein expression in primary cardiac fibroblasts under TGF-ß stimulation. Using transcriptome-wide RNA-Seq and polysome profiling-Seq in halofuginone-treated fibroblasts, we identified multiple novel Pro-rich genes in addition to collagens, such as Ltbp2 (latent TGF-ß-binding protein 2) and Sulf1 (sulfatase 1), which are translationally regulated by EPRS. SULF1 is highly enriched in human and mouse myofibroblasts. In the primary cardiac fibroblast culture system, siRNA-mediated knockdown of SULF1 attenuates cardiac myofibroblast activation and collagen deposition. Overexpression of SULF1 promotes TGF-ß-induced myofibroblast activation and partially antagonizes anti-fibrotic effects of halofuginone treatment. CONCLUSIONS: Our results indicate that EPRS preferentially controls translational activation of proline codon rich profibrotic genes in cardiac fibroblasts and augments pathological cardiac remodeling. Graphical Abstract: A graphical abstract is available for this article.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Insuficiencia Cardíaca/enzimología , Miocitos Cardíacos/enzimología , Miofibroblastos/enzimología , Biosíntesis de Proteínas , Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Aminoacil-ARNt Sintetasas/genética , Animales , Estudios de Casos y Controles , Colágeno/biosíntesis , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Femenino , Fibrosis , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Humanos , Proteínas de Unión a TGF-beta Latente/biosíntesis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Miofibroblastos/efectos de los fármacos , Miofibroblastos/patología , Células 3T3 NIH , Dominios Proteicos Ricos en Prolina , Biosíntesis de Proteínas/efectos de los fármacos , Transducción de Señal , Sulfotransferasas/biosíntesis , Sulfotransferasas/genética
10.
Nanotechnology ; 32(32)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-33906169

RESUMEN

Black arsenic phosphorus single crystals were grown using a short-way transport technique resulting in crystals up to 12 × 110µmand ranging from 200 nm to 2µmthick. The reaction conditions require tin, tin (IV) iodide, gray arsenic, and red phosphorus placed in an evacuated quartz ampule and ramped up to a maximum temperature of 630 °C. The crystal structure and elemental composition were characterized using Raman spectroscopy, x-ray diffraction, and x-ray photoelectron spectroscopy, cross-sectional transmission microscopy, and electron backscatter diffraction. The data provides valuable insight into the growth mechanism. A previously developed b-P thin film growth technique can be adapted to b-AsP film growth with slight modifications to the reaction duration and reactant mass ratios. Devices fabricated from exfoliated bulk-b-AsP grown in the same reaction condition as the thin film growth process are characterized, showing an on-off current ratio of 102, a threshold voltage of -60 V, and a peak field-effect hole mobility of 23 cm2V-1s-1atVd= -0.9 V andVg= -60 V.

11.
Opt Express ; 28(23): 34744-34753, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182935

RESUMEN

We present a method of post-deposition tuning of the optical properties of thin film dielectric filters and mirrors containing chalcogenide glass (ChG) layers by thermally adjusting their refractive index. A common challenge associated with the use of ChG films in practical applications is that they suffer from slight run-to-run variations in optical properties resulting from hard-to-control changes in source material and deposition conditions. These variations lead to inconsistencies in optical constants, making the fabrication of devices with prescribed optical properties challenging. In this paper, we present new work that takes advantage of the large variation of a ChG films' refractive index as a function of annealing. We have carried out extensive characterization of the thermal index tuning and thickness change of arsenic selenide (As2Se3) ChG thin films and observed refractive index changes larger than 0.1 in some cases. We show results for refractive index as a function of annealing time and temperature and propose a model to describe this behavior based on bond rearrangement. We apply thermal refractive index tuning to permanently shift the resonance of a Fabry-Perot filter and the cutoff wavelength of a Bragg reflector. The Bragg reflector, consisting of alternating As2Se3 and CaF2 layers, exhibits high reflectance across a ∼550 nm band with only five layers. Modeling results are compared with spectroscopic measurements, demonstrating good agreement.

12.
Haematologica ; 105(3): 585-597, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31101752

RESUMEN

Rheumatoid arthritis (RA) is a debilitating autoimmune disease characterized by chronic inflammation and progressive destruction of joint tissue. It is also characterized by aberrant blood phenotypes including anemia and suppressed lymphopoiesis that contribute to morbidity in RA patients. However, the impact of RA on hematopoietic stem cells (HSC) has not been fully elucidated. Using a collagen-induced mouse model of human RA, we identified systemic inflammation and myeloid overproduction associated with activation of a myeloid differentiation gene program in HSC. Surprisingly, despite ongoing inflammation, HSC from arthritic mice remain in a quiescent state associated with activation of a proliferation arrest gene program. Strikingly, we found that inflammatory cytokine blockade using the interleukin-1 receptor antagonist anakinra led to an attenuation of inflammatory arthritis and myeloid expansion in the bone marrow of arthritic mice. In addition, anakinra reduced expression of inflammation-driven myeloid lineage and proliferation arrest gene programs in HSC of arthritic mice. Altogether, our findings show that inflammatory cytokine blockade can contribute to normalization of hematopoiesis in the context of chronic autoimmune arthritis.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Enfermedades Autoinmunes , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Citocinas , Modelos Animales de Enfermedad , Humanos , Ratones
13.
Phys Rev Lett ; 124(18): 187701, 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32441982

RESUMEN

We demonstrate a voltage-controlled exchange bias effect in CoFeB/MgO/CoFeB magnetic tunnel junctions that is related to the interfacial Fe(Co)O_{x} formed between the CoFeB electrodes and the MgO barrier. The unique combination of interfacial antiferromagnetism, giant tunneling magnetoresistance, and sharp switching of the perpendicularly magnetized CoFeB allows sensitive detection of the exchange bias. We find that the exchange bias field can be isothermally controlled by magnetic fields at low temperatures. More importantly, the exchange bias can also be effectively manipulated by the electric field applied to the MgO barrier due to the voltage-controlled antiferromagnetic anisotropy in this system.

14.
Pediatr Res ; 87(3): 511-517, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-30776794

RESUMEN

BACKGROUND: Current in vitro human lung epithelial cell models derived from adult tissues may not accurately represent all attributes that define homeostatic and disease mechanisms relevant to the pediatric lung. METHODS: We report methods for growing and differentiating primary Pediatric Human Lung Epithelial (PHLE) cells from organ donor infant lung tissues. We use immunohistochemistry, flow cytometry, quantitative RT-PCR, and single cell RNA sequencing (scRNAseq) analysis to characterize the cellular and transcriptional heterogeneity of PHLE cells. RESULTS: PHLE cells can be expanded in culture up to passage 6, with a doubling time of ~4 days, and retain attributes of highly enriched epithelial cells. PHLE cells can form resistant monolayers, and undergo differentiation when placed at air-liquid interface. When grown at Air-Liquid Interface (ALI), PHLE cells expressed markers of airway epithelial cell lineages. scRNAseq suggests the cultures contained 4 main sub-phenotypes defined by expression of FOXJ1, KRT5, MUC5B, and SFTPB. These cells are available to the research community through the Developing Lung Molecular Atlas Program Human Tissue Core. CONCLUSION: Our data demonstrate that PHLE cells provide a novel in vitro human cell model that represents the pediatric airway epithelium, which can be used to study perinatal developmental and pediatric disease mechanisms.


Asunto(s)
Separación Celular , Células Epiteliales/fisiología , Pulmón/citología , Donantes de Tejidos , Factores de Edad , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Células Cultivadas , Células Epiteliales/metabolismo , Células Epiteliales/virología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Gripe Humana/genética , Gripe Humana/metabolismo , Gripe Humana/virología , Queratina-5/genética , Queratina-5/metabolismo , Mucina 5B/genética , Mucina 5B/metabolismo , Fenotipo , Cultivo Primario de Células , Proteína B Asociada a Surfactante Pulmonar/genética , Proteína B Asociada a Surfactante Pulmonar/metabolismo , RNA-Seq , Análisis de la Célula Individual
15.
Nanotechnology ; 31(31): 315604, 2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32311685

RESUMEN

Tranistion metal dichalcogenides are a promising family of materials for electronics and optoelectronics, in part due to their range of bandgaps that can be modulated by layer number. Here, we show that WSe2 can be selectively grown with one, two, or three layers, as regulated by a one-step hydrogen-controlled chemical vapor deposition (H-CVD) process involving cyclical pulses of H2 flow. The physical and vibrational properties of the resulting mono-, bi-, and tri-layer WSe2 films are characterized by atomic force microscopy and Raman spectroscopy. Modifying the H-CVD process to include more than three H2 pulses results in thicker WSe2 films, however the thickness of these films is not well controlled and feature small, bulk-like pyramidal islands. Transmission electron microscopy analysis reveals that most of these islands exhibit a spiral structure and appear to be grown via screw-dislocation-driven growth, similar to other works. Therefore, the H-CVD process is demonstrated to be a powerful tool for controlling the layer thickness of WSe2, but its practicality is limited to the few-layer regime.

16.
Methods ; 155: 68-76, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30576707

RESUMEN

Nonsense-mediated mRNA decay (NMD) is a cellular mRNA degradation mechanism that inhibits the expression of aberrant mRNAs harboring premature termination codons (PTCs). Recent progress in transcriptome-wide sequencing techniques has revealed that NMD also degrades approximately 5-30% of non-mutated cellular mRNAs in a way that can be regulated in response to various cellular signals. In mammals, NMD is governed by the central NMD factor UPF1, which is activated by phosphorylation after translation terminates at a nonsense codon that triggers NMD. We have found that immunoprecipitation using an antibody that is specific for phosphorylated UPF1 is a useful tool to define not only cellular NMD targets but also the nature of NMD decay intermediates and, thus, the process of NMD. To this end, we describe here a detailed protocol for what we call "NMD degradome sequencing" using high-throughput technology.


Asunto(s)
ADN Complementario/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Degradación de ARNm Mediada por Codón sin Sentido , ARN Mensajero/genética , Codón sin Sentido , ADN Complementario/metabolismo , Regulación de la Expresión Génica , Biblioteca de Genes , Células HEK293 , Humanos , Inmunoprecipitación/métodos , Ácido Ocadaico/farmacología , Fosforilación/efectos de los fármacos , ARN Helicasas/genética , ARN Helicasas/metabolismo , Estabilidad del ARN/efectos de los fármacos , ARN Mensajero/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
17.
Gut ; 68(7): 1245-1258, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30228219

RESUMEN

OBJECTIVE: Here, we evaluate the contribution of AT-rich interaction domain-containing protein 1A (ARID1A), the most frequently mutated member of the SWItch/sucrose non-fermentable (SWI/SNF) complex, in pancreatic homeostasis and pancreatic ductal adenocarcinoma (PDAC) pathogenesis using mouse models. DESIGN: Mice with a targeted deletion of Arid1a in the pancreas by itself and in the context of two common genetic alterations in PDAC, Kras and p53, were followed longitudinally. Pancreases were examined and analysed for proliferation, response to injury and tumourigenesis. Cancer cell lines derived from these models were analysed for clonogenic, migratory, invasive and transcriptomic changes. RESULTS: Arid1a deletion in the pancreas results in progressive acinar-to-ductal metaplasia (ADM), loss of acinar mass, diminished acinar regeneration in response to injury and ductal cell expansion. Mutant Kras cooperates with homozygous deletion of Arid1a, leading to intraductal papillary mucinous neoplasm (IPMN). Arid1a loss in the context of mutant Kras and p53 leads to shorter tumour latency, with the resulting tumours being poorly differentiated. Cancer cell lines derived from Arid1a-mutant tumours are more mesenchymal, migratory, invasive and capable of anchorage-independent growth; gene expression analysis showed activation of epithelial-mesenchymal transition (EMT) and stem cell identity pathways that are partially dependent on Arid1a loss for dysregulation. CONCLUSIONS: ARID1A plays a key role in pancreatic acinar homeostasis and response to injury. Furthermore, ARID1A restrains oncogenic KRAS-driven formation of premalignant proliferative IPMN. Arid1a-deficient PDACs are poorly differentiated and have mesenchymal features conferring migratory/invasive and stem-like properties.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Proteínas de Unión al ADN/genética , Transición Epitelial-Mesenquimal/fisiología , Proteínas Nucleares/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Células Acinares/patología , Células Acinares/fisiología , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Homeostasis , Ratones , Proteínas Proto-Oncogénicas p21(ras)/genética , Factores de Transcripción
18.
Circulation ; 138(17): 1864-1878, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-29716942

RESUMEN

BACKGROUND: Hypertrophic cardiomyocyte growth and dysfunction accompany various forms of heart disease. The mechanisms responsible for transcriptional changes that affect cardiac physiology and the transition to heart failure are not well understood. The intercalated disc (ID) is a specialized intercellular junction coupling cardiomyocyte force transmission and propagation of electrical activity. The ID is gaining attention as a mechanosensitive signaling hub and hotspot for causative mutations in cardiomyopathy. METHODS: Transmission electron microscopy, confocal microscopy, and single-molecule localization microscopy were used to examine changes in ID structure and protein localization in the murine and human heart. We conducted detailed cardiac functional assessment and transcriptional profiling of mice lacking myocardin-related transcription factor (MRTF)-A and MRTF-B specifically in adult cardiomyocytes to evaluate the role of mechanosensitive regulation of gene expression in load-induced ventricular remodeling. RESULTS: We found that MRTFs localize to IDs in the healthy human heart and accumulate in the nucleus in heart failure. Although mice lacking MRTFs in adult cardiomyocytes display normal cardiac physiology at baseline, pressure overload leads to rapid heart failure characterized by sarcomere disarray, ID disintegration, chamber dilation and wall thinning, cardiac functional decline, and partially penetrant acute lethality. Transcriptional profiling reveals a program of actin cytoskeleton and cardiomyocyte adhesion genes driven by MRTFs during pressure overload. Indeed, conspicuous remodeling of gap junctions at IDs identified by single-molecule localization microscopy may partially stem from a reduction in Mapre1 expression, which we show is a direct mechanosensitive MRTF target. CONCLUSIONS: Our study describes a novel paradigm in which MRTFs control an acute mechanosensitive signaling circuit that coordinates cross-talk between the actin and microtubule cytoskeleton and maintains ID integrity and cardiomyocyte homeostasis in heart disease.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Hipertrofia Ventricular Izquierda/metabolismo , Mecanotransducción Celular , Miocitos Cardíacos/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Anciano , Animales , Animales Recién Nacidos , Células COS , Estudios de Casos y Controles , Chlorocebus aethiops , Conexina 43/genética , Conexina 43/metabolismo , Femenino , Regulación de la Expresión Génica , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Persona de Mediana Edad , Miocitos Cardíacos/ultraestructura , Células 3T3 NIH , Imagen Individual de Molécula , Transactivadores/deficiencia , Transactivadores/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Función Ventricular Izquierda , Remodelación Ventricular
19.
J Intensive Care Med ; 34(1): 55-61, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28030995

RESUMEN

OBJECTIVE:: To determine resource utilization and outcomes of out-of-hospital transfer patients admitted to the intensive care unit (ICU) of a cancer referral center. DESIGN:: Single-center cohort. SETTING:: A tertiary oncological center. PATIENTS:: Patients older than 18 years transferred to our ICU from an outside hospital between January 2013 and December 2015. MEASUREMENTS AND MAIN RESULTS:: A total of 2127 (90.3%) were emergency department (ED) ICU admissions and 228 (9.7%) out-of-hospital transfers. The ICU length of stay (LOS) was longer in the out-of-hospital transfers when compared to all other ED ICU admissions ( P = .001); however, ICU and hospital mortality were similar between both groups. The majority of patients were transferred for a higher level of care (77.2%); there was no difference in the amount of interventions performed, ICU LOS, and ICU mortality between nonhigher level-of-care and higher level-of-care patients. Factors associated with an ICU LOS ≥10days were a higher Sequential Organ Failure Assessment (SOFA) score, weekend admissions, presence of shock, need for mechanical ventilation, and acute kidney injury on admission or during ICU stay ( P < .008). The ICU mortality of transferred patients was 17.5% and associated risk factors were older age, higher SOFA score on admission, use of mechanical ventilation and vasopressors during ICU stay, and renal failure on admission ( P < .0001). Data related to the transfer such as LOS at the outside facility, time of transfer, delay in transfer, and longer distance traveled were not associated with increased LOS or mortality in our study. CONCLUSION:: Organ failure severity on admission, and not transfer-related factors, continues to be the best predictor of outcomes of critically ill patients with cancer when transferred from other facilities to the ICU. Our data suggest that transferring critically ill patients with cancer to a specialized center does not lead to worse outcomes or increased resource utilization when compared to patients admitted from the ED.


Asunto(s)
Instituciones Oncológicas/estadística & datos numéricos , Enfermedad Crítica/terapia , Unidades de Cuidados Intensivos , Neoplasias/terapia , Derivación y Consulta , Adulto , Enfermedad Crítica/mortalidad , Femenino , Humanos , Unidades de Cuidados Intensivos/estadística & datos numéricos , Tiempo de Internación , Masculino , Persona de Mediana Edad , Neoplasias/mortalidad , Puntuaciones en la Disfunción de Órganos , Evaluación de Resultado en la Atención de Salud , Transferencia de Pacientes , Estudios Retrospectivos
20.
Adv Exp Med Biol ; 1185: 119-124, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31884599

RESUMEN

Hammerhead ribozymes (hhRzs), RNA enzymes capable of site-specific cleavage of arbitrary target mRNAs, have faced significant hurdles in development and optimization as gene therapeutics for clinical translation. Chemical and biological barriers must be overcome to realize an effective therapeutic. A new Facilitated ribozyme has been identified with greatly enhanced kinetic properties that lead new insight on the capacity of ribozymes to target mutant genes to treat inherited retinal degenerations.


Asunto(s)
ARN Catalítico/uso terapéutico , Degeneración Retiniana/terapia , Humanos , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA