RESUMEN
BACKGROUND: The improvement of biomedical properties, e.g. biocompatibility, of poly(3-hydroxyalkanoates) (PHAs) by copolymerization is a promising trend in bioengineering. We used strain Azotobacter chroococcum 7B, an effective producer of PHAs, for biosynthesis of not only poly(3-hydroxybutyrate) (PHB) and its main copolymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-HV), but also alternative copolymer, poly(3-hydroxybutyrate)-poly(ethylene glycol) (PHB-PEG). RESULTS: In biosynthesis we used sucrose as the primary carbon source and valeric acid or poly(ethylene glycol) 300 (PEG 300) as additional carbon sources. The chemical structure of PHB-PEG and PHB-HV was confirmed by 1H nuclear-magnetic resonance (1H NMR) analysis. The physico-chemical properties (molecular weight, crystallinity, hydrophilicity, surface energy) and surface morphology of films from PHB copolymers were studied. To study copolymers biocompatibility in vitro the protein adsorption and COS-1 fibroblasts growth on biopolymer films by XTT assay were analyzed. Both copolymers had changed physico-chemical properties compared to PHB homopolymer: PHB-HV and PHB-PEG had less crystallinity than PHB; PHB-HV was more hydrophobic than PHB in contrast to PHB-PEG appeared to have greater hydrophilicity than PHB; whereas the morphology of polymer films did not differ significantly. The protein adsorption to PHB-PEG was greater and more uniform than to PHB and PHB-PEG copolymer promoted better growth of COS-1 fibroblasts compared with PHB homopolymer. CONCLUSIONS: Thus, despite low EG-monomers content in bacterial origin PHB-PEG copolymer, this polymer demonstrated significant improvement in biocompatibility in contrast to PHB and PHB-HV copolymers, which may be coupled with increased protein adsorption and hydrophilicity of PEG-containing copolymer.
Asunto(s)
Azotobacter/metabolismo , Polímeros/metabolismo , Adsorción , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Bioingeniería , Biomasa , Células COS , Rastreo Diferencial de Calorimetría , Chlorocebus aethiops , Interacciones Hidrofóbicas e Hidrofílicas , Hidroxibutiratos/química , Hidroxibutiratos/metabolismo , Microscopía de Fuerza Atómica , Poliésteres/química , Poliésteres/metabolismo , Polietilenglicoles/química , Polietilenglicoles/metabolismo , Polímeros/química , Proteínas/química , Proteínas/metabolismo , Valeratos/química , Valeratos/metabolismo , Agua/químicaRESUMEN
The hydrolytic and enzymatic degradation of polymer films of poly(3-hydroxybutyrate) (PHB) of different molecular mass and its copolymers with 3-hydroxyvalerate (PHBV) of different 3-hydroxyvalerate (3-HV) content and molecular mass, 3-hydroxy-4-methylvalerate (PHB4MV), and polyethylene glycol (PHBV-PEG) produced by the Azotobacter chroococcum 7B by controlled biosynthesis technique were studied under in vitro model conditions. The changes in the physicochemical properties of the polymers during their in vitro degradation in the pancreatic lipase solution and in phosphate-buffered saline for a long time (183 days) were investigated using different analytical techniques. A mathematical model was used to analyze the kinetics of hydrolytic degradation of poly(3-hydroxyaklannoate)s by not autocatalytic and autocatalytic hydrolysis mechanisms. It was also shown that the degree of crystallinity of some polymers changes differently during degradation in vitro. The total mass of the films decreased slightly up to 8-9% (for the high-molecular weight PHBV with the 3-HV content 17.6% and 9%), in contrast to the copolymer molecular mass, the decrease of which reached 80%. The contact angle for all copolymers after the enzymatic degradation decreased by an average value of 23% compared to 17% after the hydrolytic degradation. Young's modulus increased up to 2-fold. It was shown that the effect of autocatalysis was observed during enzymatic degradation, while autocatalysis was not available during hydrolytic degradation. During hydrolytic and enzymatic degradation in vitro, it was found that PHBV, containing 5.7-5.9 mol.% 3-HV and having about 50% crystallinity degree, presents critical content, beyond which the structural and mechanical properties of the copolymer have essentially changed. The obtained results could be applicable to biomedical polymer systems and food packaging materials.
RESUMEN
BACKGROUND: Poly(hydroxyalkanoates) (PHA) have recently attracted increasing attention due to their biodegradability and high biocompatibility, which makes them suitable for the development of new prolong drug formulations. OBJECTIVE: A preclinical toxicology study of paclitaxel biopolymer formulation (PBF) (paclitaxel-loaded poly(3- hydroxybutyrate) (PHB) microparticles) was done in order to assess its safety and to forecast side and toxic effects in a clinical study on patients. METHOD: PHB microparticles loaded with antitumor cytostatic drug PTX were obtained by spray-drying method using Nano Spray Dryer B-90. The comprehensive study of cytotoxicity (on bone marrow stem cells), acute and chronic toxicity, allergenic and pyrogenic properties, histological investigation (in mice, rats and rabbits) of obtained PBF was carried out. RESULTS: The acute toxicity study showed that PBF is much less toxic in equivalent PTX-content doses than PTX in conventional formulation when administered intraperitoneally to mice and rats. However, the chronic toxicity study showed that at intraperitoneal administration PBF has distinct cumulative properties and toxic effects that prevent PBF from clinical testing in current composition. CONCLUSION: Thus, the PBF as a prolong drug needs to correct its parameters for further drug formulation development.
Asunto(s)
Antineoplásicos Fitogénicos/toxicidad , Biopolímeros/química , Paclitaxel/toxicidad , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/farmacocinética , Formas de Dosificación , Relación Dosis-Respuesta a Droga , Portadores de Fármacos , Femenino , Masculino , Ratones , Microesferas , Paclitaxel/administración & dosificación , Paclitaxel/farmacocinética , Prohibitinas , Conejos , Ratas , Distribución Tisular , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad SubcrónicaRESUMEN
BACKGROUND: Poly(hydroxyalkanoates) (PHA) have recently attracted increasing attention due to their biodegradability and high biocompatibility, which makes them suitable for the development of new prolong drug formulations. OBJECTIVE: This study was conducted to develop new prolong paclitaxel (PTX) formulation based on poly(3- hydroxybutyrate) (PHB) microparticles. METHOD: PHB microparticles loaded with antitumor cytostatic drug PTX were obtained by spray-drying method using Nano Spray Dryer B-90. The PTX release kinetics in vitro from PHB microparticles and their cytotoxity on murine hepatoma cell line MH-22a were studied. Microparticles antitumor activity in vivo was studied using intraperitoneally (i.p.) transplanted tumor models: murine Lewis lung carcinoma and xenografts of human breast cancer RMG1. RESULTS: Uniform PTX release from PHB-microparticles during 2 months was observed. PTX-loaded PHB microparticles have demonstrated a significant antitumor activity versus pure drug both in vitro in murine hepatoma cells and in vivo when administered i.p. to mice with murine Lewis lung carcinoma and xenografts of human breast cancer RMG1. CONCLUSION: The developed technique of PTX sustained delivery from PHB-microparticles has therapeutic potential as prolong anticancer drug formulation.