Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Carcinog ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150096

RESUMEN

C1R has been identified to have a distinct function in cutaneous squamous cell carcinoma that goes beyond its role in the complement system. However, it is currently unknown whether C1R is involved in the progression of hepatocellular carcinoma (HCC). HCC tissues were used to examine C1R expression in relation to clinical and pathological factors. Malignant characteristics of HCC cells were assessed through in vitro and in vivo experiments. The mechanism underlying the role of C1R in HCC was explored through RNA-seq, methylation-specific PCR, immuno-precipitation, and dual-luciferase reporter assays. This study found that the expression of C1R decreased as the malignancy of HCC increased and was associated with poor prognosis. C1R promoter was highly methylated through DNMT1 and DNMT3a, resulting in a decrease in C1R expression. Downregulation of C1R expression resulted in heightened malignant characteristics of HCC cells through the activation of HIF-1α-mediated glycolysis. Additionally, decreased C1R expression was found to promote xenograft tumor formation. We found that C-reactive protein (CRP) binds to C1R, and the free CRP activates the NF-κB signaling pathway, which in turn boosts the expression of HIF-1α. This increase in HIF-1α leads to higher glycolysis levels, ultimately promoting aggressive behavior in HCC. Methylation of the C1R promoter region results in the downregulation of C1R expression in HCC. C1R inhibits aggressive behavior in HCC in vitro and in vivo by inhibiting HIF-1α-regulated glycolysis. These findings indicate that C1R acts as a tumor suppressor gene during HCC progression, opening up new possibilities for innovative therapeutic approaches.

2.
Molecules ; 29(3)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38338458

RESUMEN

Porous materials are widely used as an effective strategy for the solubilization of insoluble drugs. In order to improve the solubility and bioavailability of low water-solubility drugs, it is necessary to prepare porous materials. Mannitol is one of the most popular excipients in food and drug formulations. In this study, porous mannitol was investigated as a drug carrier for low water solubility drugs. Its fabrication, drug loading, and drug release mechanisms were investigated. Porous mannitol was fabricated using the co-spray-antisolvent process and utilizing polyvinylpyrrolidone K30 (PVP K30) as the template agent. Porous mannitol particles were prepared by changing the proportion of the template agent, spraying the particles with mannitol, and eluting with ethanol in order to regulate their pore structure. In subsequent studies, porous mannitol morphology and characteristics were determined systematically. Furthermore, curcumin and ibuprofen, two poorly water-soluble drugs, were loaded into porous mannitol, and their release profiles were analyzed. The results of the study indicated that porous mannitol can be prepared using PVP K30 as a template and that the amount of template agent can be adjusted in order to control the structure of the porous mannitol. When the template agent was added in amounts of 1%, 3%, and 5%, the mannitol pore size increased by 167.80%, 95.16%, and 163.98%, respectively, compared to raw mannitol. Molecular docking revealed that mannitol and drugs are adsorbents and adhere to each other by force interaction. The cumulative dissolution of curcumin and ibuprofen-loaded porous mannitol reached 69% and 70%, respectively. The release mechanism of curcumin and ibuprofen from drug-loaded mannitol was suitable for the Korsmeyer-Peppas kinetic model. In summary, the co-spray-antisolvent method proved effective in fabricating porous materials rapidly, and porous mannitol had a remarkable effect on drug solubilization. The results obtained are conducive to the development of porous materials.


Asunto(s)
Curcumina , Ibuprofeno , Porosidad , Curcumina/química , Manitol/química , Simulación del Acoplamiento Molecular , Solubilidad , Povidona/química , Agua/química , Portadores de Fármacos
3.
Mol Pharm ; 20(9): 4404-4429, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37552597

RESUMEN

Drug delivery systems (DDSs) play an important role in delivering active pharmaceutical ingredients (APIs) to targeted sites with a predesigned release pattern. The chemical and biological properties of APIs and excipients have been extensively studied for their contribution to DDS quality and effectiveness; however, the structural characteristics of DDSs have not been adequately explored. Structure pharmaceutics involves the study of the structure of DDSs, especially the three-dimensional (3D) structures, and its interaction with the physiological and pathological structure of organisms, possibly influencing their release kinetics and targeting abilities. A systematic overview of the structures of a variety of dosage forms, such as tablets, granules, pellets, microspheres, powders, and nanoparticles, is presented. Moreover, the influence of structures on the release and targeting capability of DDSs has also been discussed, especially the in vitro and in vivo release correlation and the structure-based organ- and tumor-targeting capabilities of particles with different structures. Additionally, an in-depth discussion is provided regarding the application of structural strategies in the DDSs design and evaluation. Furthermore, some of the most frequently used characterization techniques in structure pharmaceutics are briefly described along with their potential future applications.


Asunto(s)
Biofarmacia , Neoplasias , Humanos , Sistemas de Liberación de Medicamentos , Preparaciones Farmacéuticas , Excipientes
4.
Molecules ; 28(21)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37959739

RESUMEN

Radix Paeoniae Alba (RPA) has been used extensively in Chinese traditional medicine to treat gastrointestinal disorders, immune-modulating diseases, cancers, and numerous other conditions. A few of its active components include paeoniflorin, albiflorin, lactiflorin, and catechin. However, their therapeutic effectiveness is compromised by poor pharmacokinetic profiles, low oral bioavailability, short half-lives, and poor aqueous solubility. In this study, hydroxyethyl cellulose-grafted-2-acrylamido-2-methylpropane sulfonic acid (HEC-g-AMPS) hydrogels were successfully prepared for the controlled release of Radix Paeonia Alba-solid dispersion (RPA-SD). A total of 43 compounds were identified in RPA-SD using UHPLC-Q-TOF-MS analysis. The hydrogel network formation was confirmed by FTIR, TGA, DSC, XRD, and SEM. Hydrogels' swelling and drug release were slightly higher at pH 1.2 (43.31% swelling, 81.70% drug release) than at pH 7.4 (27.73% swelling, 72.46% drug release) after 48 h. The gel fraction, drug release time and mechanical strength of the hydrogels increased with increased polymer and monomer concentration. Furthermore, the hydrogels were porous (84.15% porosity) and biodegradable (8.9% weight loss per week). Moreover, the synthesized hydrogels exhibited excellent antimicrobial and antioxidative properties.


Asunto(s)
Medicamentos Herbarios Chinos , Paeonia , Medicamentos Herbarios Chinos/química , Paeonia/química , Preparaciones de Acción Retardada , Hidrogeles , Celulosa
5.
AAPS PharmSciTech ; 24(8): 247, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030948

RESUMEN

The purpose of this study is to develop modified particles with different structures to improve the flowability and compactibility of Liuwei Dihuang (LWDH) powder using co-spray drying technology, and to investigate the preparation mechanism of modified particles and their modified direct compaction (DC) properties. Moreover, tablets with high drug loading contents were also prepared. Particles were designed using polyvinylpyrrolidone (PVP K30) and hydroxypropyl methylcellulose (HPMC E3) as shell materials, and sodium bicarbonate (NaHCO3) and ammonium bicarbonate (NH4HCO3) as pore-forming agents. The porous particles (Ps), core-shell particles (CPs), and porous core-shell particles (PCPs) were prepared by co-spray drying technology. The key DC properties and texture properties of all the particles were measured and compared. The properties of co-spray drying liquid were also determined and analyzed. According to the results, Ps showed the least improvement in DC properties, followed by CPs, and PCPs showed a significant improvement. The modifier, because of its low surface tension, was wrapped in the outer layer to form a shell, and the pore-forming agent was thermally decomposed to produce pores, forming core-shell, porous, and porous core-shell composite structures. The smooth surface of the shell structure enhances fluidity, while the porous structure allows for greater compaction space, thereby improving DC properties during the compaction process.


Asunto(s)
Povidona , Secado por Pulverización , Derivados de la Hipromelosa/química , Povidona/química , Medicina Tradicional , Tamaño de la Partícula
6.
AAPS PharmSciTech ; 24(5): 136, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308749

RESUMEN

Cyclodextrin metal-organic frameworks (CD-MOFs) exhibit a high structural diversity, which contributes to their functional properties. In this study, we have successfully synthesized a novel type of ß-cyclodextrin metal-organic framework (ß-CD-POF(I)) that exhibits excellent drug adsorption capacity and enhances stability. Single-crystal X-ray diffraction analysis revealed that ß-CD-POF(I) possessed the dicyclodextrin channel moieties and long-parallel tubular cavities. Compared with the reported ß-CD-MOFs, the ß-CD-POF(I) has a more promising drug encapsulation capability. Here, the stability of vitamin A palmitate (VAP) was effectively improved by the solvent-free method. Molecular modeling and other characterization techniques like synchrotron radiation Fourier transform infrared spectroscopy (SR-FTIR), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), and nitrogen adsorption isotherm were applied to confirm that the VAP was successfully encapsulated into the channel formed by the dicyclodextrin pairs. Furthermore, the mechanism of stability enhancement for VAP was determined to be due to the constraint and separation effects of ß-CD pairs on VAP. Therefore, ß-CD-POF(I) is capable of trapping and stabilizing certain unstable drug molecules, offering benefits and application possibilities. One kind of cyclodextrin particle with characteristic shapes of dicyclodextrin channel moieties and parallel tubular cavities, which was synthesized by a facile process. Subsequently, the spatial structure and characteristics of the ß-CD-POF(I) were primarily confirmed. The structure of ß-CD-POF(I) was then compared to that of KOH-ß-CD-MOF, and a better material for vitamin A palmitate (VAP) encapsulation was determined. VAP was successfully loaded into the particles by solvent-free method. The arrangement of spatial structure made cyclodextrin molecular cavity encapsulation in ß-CD-POF(I) more stable for VAP capture than that of KOH-ß-CD-MOF.


Asunto(s)
Ciclodextrinas , Diterpenos , Estructuras Metalorgánicas , beta-Ciclodextrinas , Solventes
7.
Crit Rev Food Sci Nutr ; 62(22): 6169-6186, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33847202

RESUMEN

Despite advancements in synthetic chemistry, nature remains the primary source of drug discovery, and this never-ending task of finding novel and active drug molecules will continue. Flavonoids have been shown to possess highly significant therapeutic activities such as anti-inflammatory, anti-oxidant, anti-viral, anti-diabetic, anti-cancer, anti-aging, neuroprotective, and cardioprotective, etc., However, it has been found that orally administered flavonoids have a critical absorption disorder and, therefore, have low bioavailability and show fluctuating pharmacokinetic and pharmacodynamic responses. A detailed investigation is required to assess and analyze the variation in the bioavailability of flavonoids due to interactions with the intestinal barrier. This review will emphasize on the bioavailability and the pharmacological applications of flavonoids, key factors affecting their bioavailability, and strategies for enhancing bioavailability, which may lead to deeper understanding of the extent of flavonoids as a treatment and/or prevention for different diseases in clinics.


Asunto(s)
Descubrimiento de Drogas , Flavonoides , Administración Oral , Antioxidantes , Disponibilidad Biológica , Flavonoides/farmacología , Preparaciones Farmacéuticas
8.
J Sep Sci ; 45(2): 638-649, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34729921

RESUMEN

Callerya nitida var. hirsutissima. Z.Wei is a classical, traditional Chinese herbal medicine mostly used to treat rheumatoid arthritis. Recent reports suggest that inconsistent and poor-quality control levels have primarily affected the therapeutic efficacy. Therefore, the aim of the current study was to investigate the active chemical ingredients, stability of components in blood, pharmacokinetics, and pharmacodynamics to specify the potential markers for quality control and quality evaluation of Callerya nitida. The active components in vitro and in vivo were obtained by ultra-high-performance liquid chromatography-mass spectrometry. Moreover, the changes of the bioactive components in the blood were monitored over time (0-24 h) in order to identify stable active components. On this basis, the pharmacokinetic characteristics of these ingredients combined with the anti-inflammatory activity were determined to screen out the potential markers for ensuring the quality control of Callerya nitida. The identified four components, such as calycosin, daidzein, formononetin, and 5-hydroxymethylfurfural, have the characteristics of intrinsic components, clearly defined structures, high exposure values, and in vivo stability, which are important for the therapeutic activity of pharmacologically active materials. Therefore, they can be used as potential markers to control the quality levels of Callerya nitida.


Asunto(s)
Medicamentos Herbarios Chinos , Fabaceae , Antiinflamatorios/farmacología , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/análisis , Medicina Tradicional China
9.
Molecules ; 27(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36296486

RESUMEN

Alzheimer's disease is the most common neurodegenerative disease, characterized by memory loss and cognitive dysfunction. Raspberry fruits contain polyphenols which have antioxidant and anti-inflammatory properties. In this study, we used molecular imprinting technology to efficiently isolate phenolic components from the raspberry ethyl acetate extracts. Six phenolic components (ellagic acid, tiliroside, kaempferol-3-o-rutoside, gallic acid, ferulic acid and vanillic acid) were identified by UPLC-Q-TOF-MS analysis. Molecular docking was used to predict the anti-inflammatory effects and anti-Alzheimer's potential of these isolated compounds, which showed a good binding ability to diseases and related proteins. However, the binding energy and docking fraction of ellagic acid, tiliroside, and kaempferol-3-o-rutoside were better than those of gallic acid, ferulic acid and vanillic acid. Additionally, by studying the effects of these six phenolic components on the LPS-induced secretion of inflammatory mediators in murine microglial (BV2) cells, it was further demonstrated that they were all capable of inhibiting the secretion of NO, IL-6, TNF-α, and IL-1ß to a certain extent. However, ellagic acid, tiliroside, and kaempferol-3-o-rutoside have better inhibitory effects compared to others. The results obtained suggest that the phenolic components extracted from ethyl acetate extracts of raspberry by molecularly imprinted polymers have the potential to inhibit the progression of Alzheimer's disease.


Asunto(s)
Impresión Molecular , Enfermedades Neurodegenerativas , Rubus , Ratones , Animales , Rubus/química , Antioxidantes/química , Quempferoles/farmacología , Ácido Elágico/farmacología , Ácido Elágico/análisis , Simulación del Acoplamiento Molecular , Factor de Necrosis Tumoral alfa , Ácido Vanílico/farmacología , Polímeros Impresos Molecularmente , Interleucina-6 , Lipopolisacáridos , Extractos Vegetales/química , Antiinflamatorios/farmacología , Ácido Gálico/farmacología , Rutina , Mediadores de Inflamación
10.
Molecules ; 27(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36500466

RESUMEN

Natural products have been an invaluable and useful source of anticancer agents over the years. Several compounds have been synthesized from natural products by modifying their structures or by using naturally occurring compounds as building blocks in the synthesis of these compounds for various purposes in different fields, such as biology, medicine, and engineering. Multiple modern and costly treatments have been applied to combat cancer and limit its lethality, but the results are not significantly refreshing. Natural products, which are a significant source of new therapeutic drugs, are currently being investigated as potential cytotoxic agents and have shown a positive trend in preclinical research and have prompted numerous innovative strategies in order to combat cancer and expedite the clinical research. Natural products are becoming increasingly important for drug discovery due to their high molecular diversity and novel biofunctionality. Furthermore, natural products can provide superior efficacy and safety due to their unique molecular properties. The objective of the current review is to provide an overview of the emergence of natural products for the treatment and prevention of cancer, such as chemosensitizers, immunotherapeutics, combinatorial therapies with other anticancer drugs, novel formulations of natural products, and the molecular mechanisms underlying their anticancer properties.


Asunto(s)
Antineoplásicos , Productos Biológicos , Neoplasias , Humanos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Productos Biológicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control , Descubrimiento de Drogas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA