RESUMEN
A quasicrystal is an ordered but nonperiodic structure understood as a projection from a higher-dimensional periodic structure. Some physical properties of quasicrystals are different from those of conventional solids. An anomalous increase in heat capacity at high temperatures has been discussed for over two decades as a manifestation of a hidden high dimensionality of quasicrystals. A plausible candidate for this origin has been the phason, which has excitation modes originating from the additional atomic rearrangements introduced by the quasiperiodic order, which can be understood in terms of shifting a higher-dimensional lattice. However, most theoretical studies of phasons have used toy models. A theoretical study of the heat capacity of realistic quasicrystals or their approximants has yet to be conducted because of the huge computational complexity. To bridge this gap between experiment and theory, we show experiments and molecular simulations on the same material, an Al-Pd-Ru quasicrystal, and its approximants. We show that at high temperatures, aluminum atoms diffuse with discontinuouslike jumps, and the diffusion paths of the aluminum can be understood in terms of jumps corresponding to hyperatomic-fluctuations-associated atomic rearrangements of the phason degrees of freedom. It is concluded that the anomaly in the heat capacity of quasicrystals arises from the hyperatomic fluctuations that play a role in diffusive Nambu-Goldstone modes.
RESUMEN
Stepwise two-photon absorption processes have received considerable attention, especially in photocatalysis, due to their relatively lower power threshold, characteristic spatial selectivity, amplification of chemical reactions, and so on. Meanwhile, studies on the relaxation dynamics of higher excited states in condensed systems have been limited for several molecular systems due to the short-lived nature of these states. In this study, we synthesized perylene-substituted perylene bisimide (PBI) and its derivate as model compounds and investigated their excited-state dynamics, including higher excited states, using pump-repump-probe spectroscopy. We revealed that these molecules form charge-transfer (CT) states instantaneously after the excitation, regardless of whether it is the perylene moiety or the PBI moiety that is excited. The lifetime of the CT state was shorter when the distance between the donor (perylene) and the acceptor (PBI) was shorter. Moreover, we also revealed that a higher-lying CT state generated by the stepwise excitation of the CT state using a 740-nm pulse induced Stark effect to the neighboring perylene moiety. The Stark effect not only gives more detailed information about the CT state, but also presents the possibility of new photofunctions, such as instantaneous modulation of the electronic state to achieve optimal electronic properties. These insights contribute to understanding advanced photochemical reactions and would be important for exploring photocatalytic reactions involving higher excited states.
RESUMEN
Perfluoroalkyl substances (PFASs) and fluorinated polymers (FPs) have been extensively utilized in various industries, whereas their extremely high stability poses environmental persistence and difficulty in waste treatment. Current decomposition approaches of PFASs and FPs typically require harsh conditions such as heating over 400 °C. Thus, there is a pressing need to develop a new technique capable of decomposing them under mild conditions. Here, we demonstrated that perfluorooctanesulfonate (PFOS), known as a "persistent chemical," and Nafion, a widely utilized sulfonated FP for ion-exchange membranes, can be efficiently decomposed into fluorine ions under ambient conditions via the irradiation of visible LED light onto semiconductor nanocrystals (NCs). PFOS was completely defluorinated within 8-h irradiation of 405-nm LED light, and the turnover number of the C-F bond dissociation per NC was 17200. Furthermore, 81 % defluorination of Nafion was achieved for 24-h light irradiation, demonstrating the efficient photocatalytic properties under visible light. We revealed that this decomposition is driven by cooperative mechanisms involving light-induced ligand displacements and Auger-induced electron injections via hydrated electrons and higher excited states. This study not only demonstrates the feasibility of efficiently breaking down various PFASs and FPs under mild conditions but also paves the way for advancing toward a sustainable fluorine-recycling society.
RESUMEN
Nonlinear photochromic reactions that work with weak incoherent light are important for molecular operations with high spatial resolution and multiple photofunctions based on single molecules. However, nonlinear photochromic compounds generally require complex molecular design, restricting accessibility in various fields. Herein, we report nonlinear photochromic properties in a perylene-substituted rhodamine spirolactam derivative (Rh-Pe), which is synthesized from rhodamine B in facile procedures. Direct excitation of Rh-Pe produces the triplet excited state via the charge-transfer (CT) state. The triplet excited state causes triplet-triplet annihilation to bring the generation of the intensely colored ring-open form with nonlinear behavior. Furthermore, green- and red-light-induced photochromism was achieved in Rh-Pe using triplet sensitizers, although Rh-Pe can be directly excited only by ultraviolet and blue light. Our findings are expected to contribute to the development of photofunctional materials showing nonlinear behavior and low-energy light responsivity.
RESUMEN
Self-learning hybrid Monte Carlo (SLHMC) is a first-principles simulation that allows for exact ensemble generation on potential energy surfaces based on density functional theory. The statistical sampling can be accelerated with the assistance of smart trial moves by machine learning potentials. In the first report [Nagai et al., Phys. Rev. B 102, 041124(R) (2020)], the SLHMC approach was introduced for the simplest case of canonical sampling. We herein extend this idea to isothermal-isobaric ensembles to enable general applications for soft materials and liquids with large volume fluctuation. As a demonstration, the isothermal-isobaric SLHMC method was used to study the vibrational structure of liquid silica at temperatures close to the melting point, whereby the slow diffusive motion is beyond the time scale of first-principles molecular dynamics. It was found that the static structure factor thus computed from first-principles agrees quite well with the high-energy x-ray data.
RESUMEN
Trans-p-methoxy arylazopyrazole spontaneously forms non-centrosymmetric polar crystals, which reversibly undergo liquefaction upon photoisomerization to the cis-isomer. This liquid cis-isomer has a large electric dipole moment and is highly soluble in water (solubility up to ≈58â mM), which is remarkably higher than that of the trans-isomer (690â µM). Vis-light illumination of the aqueous cis-isomer generates macroscopically oriented, non-centrosymmetric crystals at the air-water interface. Polar crystals are also formed in sandwich glass cells (spacing, 20â µm) upon photo-induced crystallization of the liquid cis-isomer. The trans-crystals thus formed showed second harmonic generation (SHG) whose intensity is switched on/off in response to the photo-induced phase transition.
RESUMEN
The combination of spin-orbit coupling with interactions results in many exotic phases of matter. In this Letter, we investigate the superconducting pairing instability of the two-dimensional extended Hubbard model with both Rashba and Dresselhaus spin-orbit coupling within the mean-field level at both zero and finite temperature. We find that both first- and second-order time-reversal symmetry breaking topological gapped phases can be achieved under appropriate parameters and temperature regimes due to the presence of a favored even-parity s+id-wave pairing even in the absence of an external magnetic field or intrinsic magnetism. This results in two branches of chiral Majorana edge states on each edge or a single zero-energy Majorana corner state at each corner of the sample. Interestingly, we also find that not only does tuning the doping level lead to a direct topological phase transition between these two distinct topological gapped phases, but also using the temperature as a highly controllable and reversible tuning knob leads to different direct temperature-driven topological phase transitions between gapped and gapless topological superconducting phases. Our findings suggest new possibilities in interacting spin-orbit coupled systems by unifying both first- and higher-order topological superconductors in a simple but realistic microscopic model.
RESUMEN
When a strongly correlated system supports well-defined quasiparticles, it allows for an elegant one-body effective description within the non-Hermitian topological theory. While the microscopic many-body Hamiltonian of a closed system remains Hermitian, the one-body quasiparticle Hamiltonian is non-Hermitian due to the finite quasiparticle lifetime. We use such a non-Hermitian description in the heavy-fermion two-dimensional systems with the momentum-dependent hybridization to reveal a fascinating phenomenon which can be directly probed by the spectroscopic measurements, the bulk "Fermi arcs." Starting from a simple two-band model, we first combine the phenomenological approach with the perturbation theory to show the existence of the Fermi arcs and reveal their connection to the topological exceptional points, special points in the Brillouin zone where the Hamiltonian is nondiagonalizable. The appearance of such points necessarily requires that the electrons belonging to different orbitals have different lifetimes. This requirement is naturally satisfied in the heavy-fermion systems, where the itinerant c electrons experience much weaker interaction than the localized f electrons. We then utilize the dynamical mean field theory to numerically calculate the spectral function and confirm our findings. We show that the concept of the exceptional points in the non-Hermitian quasiparticle Hamiltonians is a powerful tool for predicting new phenomena in strongly correlated electron systems.
RESUMEN
Currently, the use of amino acids in supplements and functional foods is increasing globally. However, there are no guidelines for the upper limit of ingestion for the safe use of these amino acids. Safety evaluation of chemical substances is generally performed through non-clinical and clinical studies. However, amino acids that have these safety data are limited. Therefore, we used a systematic review approach for evaluating the safety of amino acids. In the present study, we evaluated the safety of L-lysine added to an ordinary diet in humans. Using PubMed, Cochrane Library, Ichushi Web, and EBSCOhost as search databases, we comprehensively searched human studies on oral ingestion of L-lysine. Ultimately, 71 studies were selected for evaluation. Of these, 12 studies were of relatively high quality with Jadad scores ≥ 3. The dose range of L-lysine in the selected studies was 16.8-17,500 mg/day, and the range of dosing period was 1-1095 days. The observed adverse events were mainly subjective symptoms related to the gastrointestinal tract such as nausea, stomachache, and diarrhea. The provisional no-observed-adverse-effect level obtained based on these gastrointestinal symptoms was 6000 mg/person/day. Integrated analysis of the risk for developing gastrointestinal symptoms revealed that the risk ratio was 1.02 (95% CI, 0.96-1.07; p = 0.49); thus, no significant increase was observed. (UMIN000028914).
Asunto(s)
Suplementos Dietéticos , Tracto Gastrointestinal/metabolismo , Lisina/análisis , Medición de Riesgo/métodos , Administración Oral , Ingestión de Alimentos , Humanos , Lisina/administración & dosificación , SeguridadRESUMEN
OBJECTIVES: Oxygen desaturation during tracheal intubation is known to be associated with adverse ICU outcomes in critically ill children. We aimed to determine the occurrence and severity of desaturation during tracheal intubations and the association with adverse hemodynamic tracheal intubation-associated events. DESIGN: Retrospective cohort study as a part of the National Emergency Airway Registry for Children Network's quality improvement project from January 2012 to December 2014. SETTING: International PICUs. PATIENTS: Critically ill children younger than 18 years undergoing primary tracheal intubations in the ICUs. INTERVENTIONS: tracheal intubation processes of care and outcomes were prospectively collected using standardized operational definitions. We defined moderate desaturation as oxygen saturation less than 80% and severe desaturation as oxygen saturation less than 70% during tracheal intubation procedures in children with initial oxygen saturation greater than 90% after preoxygenation. Adverse hemodynamic tracheal intubation-associated event was defined as cardiac arrests, hypo or hypertension requiring intervention, and dysrhythmia. MEASUREMENTS AND MAIN RESULTS: A total of 5,498 primary tracheal intubations from 31 ICUs were reported. Moderate desaturation was observed in 19.3% associated with adverse hemodynamic tracheal intubation-associated events (9.8% among children with moderate desaturation vs 4.4% without desaturation; p < 0.001). Severe desaturation was observed in 12.9% of tracheal intubations, also significantly associated with hemodynamic tracheal intubation-associated events. After adjusting for patient, provider, and practice factors, the occurrence of moderate desaturation was independently associated with hemodynamic tracheal intubation-associated events: adjusted odds ratio 1.83 (95% CI, 1.34-2.51; p < 0.001). The occurrence of severe desaturation was also independently associated with hemodynamic tracheal intubation-associated events: adjusted odds ratio 2.16 (95% CI, 1.54-3.04; p < 0.001). Number of tracheal intubation attempts was also significantly associated with the frequency of moderate and severe desaturations (p < 0.001). CONCLUSIONS: In this large tracheal intubation quality improvement database, we found moderate and severe desaturation are reported among 19% and 13% of all tracheal intubation encounters. Moderate and severe desaturations were independently associated with the occurrence of adverse hemodynamic events. Future quality improvement interventions may focus to reduce desaturation events.
Asunto(s)
Enfermedad Crítica/terapia , Hemodinámica/fisiología , Hipoxia/epidemiología , Intubación Intratraqueal/efectos adversos , Oxígeno/sangre , Adolescente , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Hipoxia/etiología , Lactante , Unidades de Cuidado Intensivo Pediátrico/estadística & datos numéricos , Masculino , Mejoramiento de la Calidad , Sistema de Registros , Estudios RetrospectivosRESUMEN
OBJECTIVE: Tracheal intubation in PICUs is a common procedure often associated with adverse events. The aim of this study is to evaluate the association between immediate events such as tracheal intubation associated events or desaturation and ICU outcomes: length of stay, duration of mechanical ventilation, and mortality. STUDY DESIGN: Prospective cohort study with 35 PICUs using a multicenter tracheal intubation quality improvement database (National Emergency Airway Registry for Children: NEAR4KIDS) from January 2013 to June 2015. Desaturation defined as Spo2 less than 80%. SETTING: PICUs participating in NEAR4KIDS. PATIENTS: All patients less than18 years of age undergoing primary tracheal intubations with ICU outcome data were analyzed. MEASUREMENTS AND MAIN RESULTS: Five thousand five hundred four tracheal intubation encounters with median 108 (interquartile range, 58-229) tracheal intubations per site. At least one tracheal intubation associated event was reported in 892 (16%), with 364 (6.6%) severe tracheal intubation associated events. Infants had a higher frequency of tracheal intubation associated event or desaturation than older patients (48% infants vs 34% for 1-7 yr and 18% for 8-17 yr). In univariate analysis, the occurrence of tracheal intubation associated event or desaturation was associated with a longer mechanical ventilation (5 vs 3 d; p < 0.001) and longer PICU stay (14 vs 11 d; p < 0.001) but not with PICU mortality. The occurrence of severe tracheal intubation associated events was associated with longer mechanical ventilation (5 vs 4 d; p < 0.003), longer PICU stay (15 vs 12 d; p < 0.035), and PICU mortality (19.9% vs 9.6%; p < 0.0001). In multivariable analyses, the occurrence of tracheal intubation associated event or desaturation was significantly associated with longer mechanical ventilation (+12%; 95% CI, 4-21%; p = 0.004), and severe tracheal intubation associated events were independently associated with increased PICU mortality (OR = 1.80; 95% CI, 1.24-2.60; p = 0.002), after adjusted for patient confounders. CONCLUSIONS: Adverse tracheal intubation associated events and desaturations are common and associated with longer mechanical ventilation in critically ill children. Severe tracheal intubation associated events are associated with higher ICU mortality. Potential interventions to decrease tracheal intubation associated events and oxygen desaturation, such as tracheal intubation checklist, use of apneic oxygenation, and video laryngoscopy, may need to be considered to improve ICU outcomes.
Asunto(s)
Mortalidad Hospitalaria , Unidades de Cuidado Intensivo Pediátrico/estadística & datos numéricos , Intubación Intratraqueal/efectos adversos , Tiempo de Internación/estadística & datos numéricos , Respiración Artificial/estadística & datos numéricos , Adolescente , Niño , Preescolar , Enfermedad Crítica , Bases de Datos Factuales , Femenino , Humanos , Lactante , Recién Nacido , Intubación Intratraqueal/mortalidad , Masculino , Análisis Multivariante , Evaluación de Resultado en la Atención de Salud , Mejoramiento de la Calidad , Estudios RetrospectivosRESUMEN
Local disordered nanostructures in an atomically thick metallic layer on a semiconducting substrate play significant and decisive roles in transport properties of two-dimensional (2D) conductive systems. We measured the electrical conductivity through a step of monoatomic height in a truly microscopic manner by using as a signal the superconducting pair correlation induced by the proximity effect. The transport property across a step of a one-monolayer Pb surface metallic phase, formed on a Si(111) substrate, was evaluated by inducing the pair correlation around the local defect and measuring its response, i.e., the reduced density of states at the Fermi energy using scanning tunneling microscopy. We found that the step resistance has a significant contribution to the total resistance on a nominally flat surface. Our study also revealed that steps in the 2D metallic layer terminate the propagation of the pair correlation. Superconductivity is enhanced between the first surface step and the superconductor-normal-metal interface by reflectionless tunneling when the step is located within a coherence length.
Asunto(s)
Personal de Salud , Unidades de Cuidados Intensivos , Relaciones Interprofesionales , Técnicas Sociométricas , Acelerometría , Estudios de Factibilidad , Humanos , Recepcionistas de Consultorio Médico , Secretarias Médicas , Enfermeras y Enfermeros , Asistentes de Enfermería , Farmacéuticos , Médicos , Factores de TiempoRESUMEN
TAFRO syndrome is a systemic inflammatory disorder. TAFRO is an acronym that stands for thrombocytopenia, anasarca, fever, reticulin fibrosis, renal dysfunction, lymphadenopathy and hepatosplenomegaly. There are no reports of TAFRO syndrome describing cholangitis on liver biopsy. Herein, we report the first case of TAFRO syndrome with cholangitis. The patient was a 56-year-old man who presented with sudden onset abdominal pain and fever. His symptoms progressed to generalized edema, thrombocytopenia, hepatomegaly, and acute renal failure. Biopsies taken from the mediastinal lymph nodes and bone marrow showed the mixed type of multicentric Castleman's disease and mild reticulin fibrosis, respectively, compatible with TAFRO syndrome. His symptoms were temporarily relieved by steroid pulse therapy and tocilizumab. Fever and anasarca relapsed in a few weeks, however. He was then administered rituximab which resolved his symptoms almost completely.
Asunto(s)
Colangitis/patología , Edema/complicaciones , Fiebre/complicaciones , Fibrosis/complicaciones , Hepatopatías/complicaciones , Hígado/patología , Enfermedades del Bazo/complicaciones , Trombocitopenia/complicaciones , Biopsia , Colangitis/diagnóstico , Colangitis/etiología , Colangitis/terapia , Humanos , Masculino , Persona de Mediana Edad , SíndromeRESUMEN
We have studied the superconducting Si(111)-(â7×â3)-In surface using a ³He-based low-temperature scanning tunneling microscope. Zero-bias conductance images taken over a large surface area reveal that vortices are trapped at atomic steps after magnetic fields are applied. The crossover behavior from Pearl to Josephson vortices is clearly identified from their elongated shapes along the steps and significant recovery of superconductivity within the cores. Our numerical calculations combined with experiments clarify that these characteristic features are determined by the relative strength of the interterrace Josephson coupling at the atomic step.
RESUMEN
We herein report photodoping and thereby photochromism of semiconductor nanocrystals under air in a temperature-responsive supramolecular gel and its back reactions induced by direct heating or near-infrared photothermal conversion. We also present their application to the spatiotemporal patterning of photoluminescence.
RESUMEN
Organic ligands on the surface of nanocrystals (NCs) are extremely important in influencing various physical properties, such as dispersibility, electrical properties, and optical properties. Recent studies have revealed that a slight difference in the molecular structure of aliphatic organic ligands significantly affects the dispersibility of the NCs. On the other hand, the effects of the difference in the molecular structure of ligands on the excited-state dynamics of NCs remain elusive. In this study, we synthesized a series of colloidal ZnO NCs capped with different alkyl phosphonic acids and investigated their photophysical properties using emission decay measurements and transient absorption spectroscopy. The spectral shape and lifetime of the emission originating from the surface oxygen defects of ZnO NCs are almost the same irrespective of the alkyl phosphonic ligands used, indicating that the electronic states of the surface oxygen defects are not affected by the bulkiness of the ligand. On the other hand, the emission quantum yield correlates with the rate of carrier trapping by oxygen defects, suggesting that the rate of carrier trapping reflects the number of oxygen defects. Revealing the detailed relationship between molecular structures of organic ligands and the optical properties of NCs is important for advanced photofunctional superstructures using semiconductor NCs.
RESUMEN
Reactive astrocytes play a pivotal role in the pathogenesis of neurological diseases; however, their functional phenotype and the downstream molecules by which they modify disease pathogenesis remain unclear. Here, we genetically increase P2Y1 receptor (P2Y1R) expression, which is upregulated in reactive astrocytes in several neurological diseases, in astrocytes of male mice to explore its function and the downstream molecule. This astrocyte-specific P2Y1R overexpression causes neuronal hyperexcitability by increasing both astrocytic and neuronal Ca2+ signals. We identify insulin-like growth factor-binding protein 2 (IGFBP2) as a downstream molecule of P2Y1R in astrocytes; IGFBP2 acts as an excitatory signal to cause neuronal excitation. In neurological disease models of epilepsy and stroke, reactive astrocytes upregulate P2Y1R and increase IGFBP2. The present findings identify a mechanism underlying astrocyte-driven neuronal hyperexcitability, which is likely to be shared by several neurological disorders, providing insights that might be relevant for intervention in diverse neurological disorders.
Asunto(s)
Astrocitos , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina , Neuronas , Receptores Purinérgicos P2Y1 , Regulación hacia Arriba , Animales , Humanos , Masculino , Ratones , Astrocitos/metabolismo , Señalización del Calcio , Modelos Animales de Enfermedad , Epilepsia/metabolismo , Epilepsia/genética , Epilepsia/fisiopatología , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y1/genéticaRESUMEN
Background: Nasal tracheal intubation (TI) represents a minority of all TI in the pediatric intensive care unit (PICU). The risks and benefits of nasal TI are not well quantified. As such, safety and descriptive data regarding this practice are warranted. Methods: We evaluated the association between TI route and safety outcomes in a prospectively collected quality improvement database (National Emergency Airway Registry for Children: NEAR4KIDS) from 2013 to 2020. The primary outcome was severe desaturation (SpO2 > 20% from baseline) and/or severe adverse TI-associated events (TIAEs), using NEAR4KIDS definitions. To balance patient, provider, and practice covariates, we utilized propensity score (PS) matching to compare the outcomes of nasal vs. oral TI. Results: A total of 22,741 TIs [nasal 870 (3.8%), oral 21,871 (96.2%)] were reported from 60 PICUs. Infants were represented in higher proportion in the nasal TI than the oral TI (75.9%, vs 46.2%), as well as children with cardiac conditions (46.9% vs. 14.4%), both p < 0.001. Severe desaturation or severe TIAE occurred in 23.7% of nasal and 22.5% of oral TI (non-adjusted p = 0.408). With PS matching, the prevalence of severe desaturation and or severe adverse TIAEs was 23.6% of nasal vs. 19.8% of oral TI (absolute difference 3.8%, 95% confidence interval (CI): - 0.07, 7.7%), p = 0.055. First attempt success rate was 72.1% of nasal TI versus 69.2% of oral TI, p = 0.072. With PS matching, the success rate was not different between two groups (nasal 72.2% vs. oral 71.5%, p = 0.759). Conclusion: In this large international prospective cohort study, the risk of severe peri-intubation complications was not significantly higher. Nasal TI is used in a minority of TI in PICUs, with substantial differences in patient, provider, and practice compared to oral TI.A prospective multicenter trial may be warranted to address the potential selection bias and to confirm the safety of nasal TI.