Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Biochem Biophys Res Commun ; 647: 72-79, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-36731336

RESUMEN

Apelin (APL), an endogenous ligand for APJ, has been reported to be upregulated in a murine model of acute colitis induced by sodium dextran sulfate, as well as inflammatory bowel diseases (IBD) in humans. However, the mechanisms and functions of APL/APJ axis in the pathogenesis of IBD are unclear. We herein analyzed CD4+ T cells to determine the functions of APL in a murine model of chronic colitis induced in Rag deficient mice (Rag-/-). In colonic tissues of wild-type mice (WT), we found that APL was expressed especially in the lamina propria lymphocytes, where CD4+ T cells are dominant, rather than the epithelial cells. Unexpectedly, the APL expression was rather downregulated in the colonic tissue of the chronic colitis group compared to the control groups (Rag-/- before colitis induction and WT). The APL expression was downregulated when naïve T cells were differentiated into effecter T cells. A lack of APL resulted in decreased naïve T cells and increased effecter T cells in secondary lymphoid organs. A synthetic APL peptide, [Pyr1]-APL-13, increased IL-10 and decreased IFN-γ productions by effecter T cells. Administration of [Pyr1]-APL-13 improved survival rate in association with lessened colitis severity and decreased pro-inflammatory cytokine production. This is the first report showing immunological function of APL specifically on T cells, and these results indicate that APL/APJ axis may be a novel therapeutic target for IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Ratones , Humanos , Animales , Linfocitos T/metabolismo , Apelina/metabolismo , Modelos Animales de Enfermedad , Colitis/patología , Enfermedades Inflamatorias del Intestino/metabolismo , Sulfato de Dextran , Ratones Endogámicos C57BL , Linfocitos T CD4-Positivos
2.
Gut ; 71(3): 487-496, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33963042

RESUMEN

OBJECTIVE: Although immunoglobulin A (IgA) is abundantly expressed in the gut and known to be an important component of mucosal barriers against luminal pathogens, its precise function remains unclear. Therefore, we tried to elucidate the effect of IgA on gut homeostasis maintenance and its mechanism. DESIGN: We generated various IgA mutant mouse lines using the CRISPR/Cas9 genome editing system. Then, we evaluated the effect on the small intestinal homeostasis, pathology, intestinal microbiota, cytokine production, and immune cell activation using intravital imaging. RESULTS: We obtained two lines, with one that contained a <50 base pair deletion in the cytoplasmic region of the IgA allele (IgA tail-mutant; IgAtm/tm) and the other that lacked the most constant region of the IgH α chain, which resulted in the deficiency of IgA production (IgA-/-). IgA-/- exhibited spontaneous inflammation in the ileum but not the other parts of the gastrointestinal tract. Associated with this, there were significantly increased lamina propria CD4+ T cells, elevated productions of IFN-γ and IL-17, increased ileal segmented filamentous bacteria and skewed intestinal microflora composition. Intravital imaging using Ca2+ biosensor showed that IgA-/- had elevated Ca2+ signalling in Peyer's patch B cells. On the other hand, IgAtm/tm seemed to be normal, suggesting that the IgA cytoplasmic tail is dispensable for the prevention of the intestinal disorder. CONCLUSION: IgA plays an important role in the mucosal homeostasis associated with the regulation of intestinal microbiota and protection against mucosal inflammation especially in the ileum.


Asunto(s)
Ileítis/etiología , Íleon/patología , Inmunoglobulina A/fisiología , Animales , Linfocitos B/fisiología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Microbioma Gastrointestinal , Homeostasis , Ileítis/metabolismo , Ileítis/patología , Íleon/metabolismo , Íleon/ultraestructura , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Microscopía Intravital , Masculino , Ratones , Ratones Mutantes , Linfocitos T/fisiología
3.
Biochem Biophys Res Commun ; 592: 74-80, 2022 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-35032835

RESUMEN

Crohn's disease is an inflammatory disease of the gut caused by a complex interplay among genetic, microbial, and environmental factors. The intestinal tract is constantly exposed to metals and other trace elements ingested as food. Synchrotron radiation-induced X-ray fluorescence spectroscopy and X-ray absorption fine structure analysis revealed the deposition of nickel particles within Crohn's disease tissue specimens. After nickel particle stimulation, THP-1 cells showed filopodia formation and autophagic vacuoles containing lipid bodies. Nickel particles precipitated colitis in mice bearing mutations of the IBD susceptibility protein A20/TNFAIP3. Nickel particles also exacerbated dextran sulfate sodium-induced colitis in mice harboring myeloid cell-specific Atg5 deficiency. These findings illustrate that nickel particle ingestion may worsen Crohn's disease by perturbing autophagic processes in the intestine, providing new insights into environmental factors in Crohn's disease pathogenesis.


Asunto(s)
Enfermedad de Crohn/patología , Progresión de la Enfermedad , Inflamación/patología , Intestinos/patología , Níquel/toxicidad , Animales , Autofagia/efectos de los fármacos , Proteína 5 Relacionada con la Autofagia/metabolismo , Sulfato de Dextran , Susceptibilidad a Enfermedades , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/patología , Macrófagos/ultraestructura , Ratones Endogámicos C57BL , Células THP-1 , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo
4.
Biochem Biophys Res Commun ; 628: 147-154, 2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36087511

RESUMEN

Expression of mucin MUC2, a component of the colonic mucus layer, plays a crucial role in intestinal homeostasis. Here, we describe a new regulator of MUC2 expression, the deubiquitinase ZRANB1 (Trabid). A ZRANB1 mutation changing cysteine to serine in amino acid position 443, affects ubiquitination. To analyze ZRANB1 function in the intestine, we generated Zranb1 C443S mutant knock-in (Zranb1C443S/C443S) mice using the CRISPR/Cas9 system. Zranb1C443S/C443S mice exhibited decreased mRNA expression and MUC2 production. Colonic organoids from Zranb1C443S/C443S mice displayed decreased Muc2 mRNA expression following differentiation into goblet cells. Finally, we analyzed dextran sulfate sodium-induced colitis to understand ZRANB1's role in intestinal inflammation. Zranb1C443S/C443S mice with colitis exhibited significant weight loss, reduced colon length, and worsening clinical and pathological scores, indicating that ZRANB1 contributes to intestinal homeostasis. Together, these results suggest that ZRANB1 regulates MUC2 expression and intestinal inflammation, which may help elucidating the pathogenesis of inflammatory bowel disease and developing new therapeutics targeting ZRANB1.


Asunto(s)
Colitis , Mucosa Intestinal , Proteasas Ubiquitina-Específicas , Animales , Colitis/inducido químicamente , Colitis/genética , Colitis/metabolismo , Cisteína/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Sulfato de Dextran/toxicidad , Inflamación/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Mucinas/metabolismo , Moco/metabolismo , ARN Mensajero/genética , Serina/metabolismo , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo
5.
Biochem Biophys Res Commun ; 542: 17-23, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33482469

RESUMEN

Nickel, the most frequent contact allergy cause, is widely used for various metallic materials and medical devices. Autophagy is an intracellular protein degradation system and contributes to metal recycling. However, it is unclear the functions of nickel in autophagy. We here demonstrated that NiCl2 induced microtubule-associated protein 1 light chain 3 (LC3)-II and LC3 puncta, markers of autophagosomes. Bafilomycin A1 (BafA1) treatment did not enhance LC3 puncta under NiCl2 stimulation, suggesting that NiCl2 did not induce autophagic flux. In addition, NiCl2 promotes the accumulation of SQSTM1/p62 and increased SQSTM1/p62 colocalization with lysosomal-associated membrane protein 1 (LAMP1). These data indicated that NiCl2 attenuates autophagic flux. Interestingly, NiCl2 induced the expression of the high-molecular-weight (MW) form of SQSTM1/p62. Inhibition of NiCl2-induced reactive oxygen species (ROS) reduced the high-MW SQSTM1/p62. We also showed that NiCl2-induced ROS activate transglutaminase (TG) activity. We found that transglutaminase 2 (TG2) inhibition reduced high-MW SQSTM1/p62 and SQSTM1/p62 puncta under NiCl2 stimulation, indicating that TG2 regulates SQSTM1/p62 protein homeostasis under NiCl2 stimulation. Our study demonstrated that nickel ion regulates autophagy flux and TG2 restricted nickel-dependent proteostasis.

6.
Biochem Biophys Res Commun ; 535: 99-105, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33352461

RESUMEN

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) expressed in T cells may regulate immune responses in the gut. In addition to T cells, B cells are also an important population in the gut-associated lymphoid tissues that orchestrate mucosal homeostasis. However, the role of CEACAM1 in B cells has not been elucidated. We herein analyzed mature B cells to determine the functions of CEACAM1. Flow cytometry revealed high expression of CEACAM1 on B cells in secondary lymphoid tissues. Cytokine production induced by activation of B cell receptor (BCR) signaling was suppressed by CEACAM1 signaling in contrast to that associated with either Toll-like receptor 4 or CD40 signaling. Confocal microscopy revealed co-localization of CEACAM1 and BCR when activated with anti-Igµ F(ab')2 fragment. Overexpression of CEACAM1 in a murine B cell line, A20, resulted in reduced expressions of activation surface markers with decreased Ca2+ influx after BCR signal activation. Overexpression of CEACAM1 suppressed BCR signal cascade in A20 cells in association with decreased spontaneous proliferation. Our results suggest that CEACAM1 can regulate BCR-mediated mature B cell activation in lymphoid tissues. Therefore, further studies of this molecule may lead to greater insights into the mechanisms of immune responses within peripheral tissues and the potential treatment of inflammatory diseases.


Asunto(s)
Antígenos CD/metabolismo , Moléculas de Adhesión Celular/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal , Animales , Linfocitos B/metabolismo , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Citocinas/biosíntesis , Femenino , Ratones Endogámicos C57BL
7.
Immunity ; 37(5): 930-46, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-23123061

RESUMEN

Carcinoembryonic antigen cell adhesion molecule like I (CEACAM1) is expressed on activated T cells and signals through either a long (L) cytoplasmic tail containing immune receptor tyrosine based inhibitory motifs, which provide inhibitory function, or a short (S) cytoplasmic tail with an unknown role. Previous studies on peripheral T cells show that CEACAM1-L isoforms predominate with little to no detectable CEACAM1-S isoforms in mouse and human. We show here that this was not the case in tissue resident T cells of intestines and gut associated lymphoid tissues, which demonstrated predominant expression of CEACAM1-S isoforms relative to CEACAM1-L isoforms in human and mouse. This tissue resident predominance of CEACAM1-S expression was determined by the intestinal environment where it served a stimulatory function leading to the regulation of T cell subsets associated with the generation of secretory IgA immunity, the regulation of mucosal commensalism, and defense of the barrier against enteropathogens.


Asunto(s)
Antígeno Carcinoembrionario/inmunología , Inmunidad Mucosa/inmunología , Intestinos/inmunología , Linfocitos T/inmunología , Secuencias de Aminoácidos/genética , Secuencias de Aminoácidos/inmunología , Animales , Antígeno Carcinoembrionario/genética , Antígeno Carcinoembrionario/metabolismo , Citoplasma/genética , Citoplasma/inmunología , Citoplasma/metabolismo , Homeostasis , Inmunidad Mucosa/genética , Inmunoglobulina A/genética , Inmunoglobulina A/inmunología , Inmunoglobulina A/metabolismo , Mucosa Intestinal/metabolismo , Listeria monocytogenes/inmunología , Listeriosis/inmunología , Activación de Linfocitos , Metagenoma/inmunología , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Isoformas de Proteínas , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología , Receptores Inmunológicos/metabolismo , Linfocitos T/metabolismo , Tirosina/genética , Tirosina/inmunología , Tirosina/metabolismo
8.
Biochem Biophys Res Commun ; 522(4): 971-977, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31810607

RESUMEN

In Japan and other Asian countries, increased fat uptake induced by a westernized diet is thought to be associated with an increased incidence of inflammatory bowel disease, colorectal cancer and food allergies; however, the mechanism for this remains unclear. High-fat diet (HFD)-fed mice are common animal models used to examine the effect of fat intake in vivo. HFDs are reported to exacerbate DSS-induced colitis and intestinal tumorigenesis, but the effect of HFDs on the intestines before disease induction is often overlooked. We found that the intestinal and gut-associated lymphoid tissue (GALT) morphology of HFD-fed mice differed from that of standard diet (SD)-fed mice. To clarify the mechanism by which fat intake increases intestinal diseases, we analyzed the morphological and immunological aspects of the intestines of HFD-fed mice as well as the molecular mechanisms and physiology. Feeding an HFD for 3 weeks induced atrophy of the small intestine, colon and GALT and reduced the number of small intestinal intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs). Feeding an HFD for only one day reduced the number of small intestinal (SI)-IELs and SI-LPLs. The effect of feeding a 3-week HFD continued for 2 weeks after returning to the SD. The effect of the HFD on the intestinal immune system was independent of the gut microbes. We hypothesized that the cytotoxicity of the abundant HFD-derived free fatty acids in the intestinal lumen impairs the intestinal immune system. Both saturated and unsaturated free fatty acids were toxic to intestinal T-cells in vitro. Orally administering free fatty acids reduced the number of SI-IELs and LPLs. Using a lipase inhibitor to reduce the luminal free fatty acids attenuated the HFD-induced changes in the intestinal immune system, while using a statin to reduce the serum free fatty acids did not. Thus, HFD-induced free fatty acids damaged the intestines; this effect was termed "intestinal lipotoxicity". Because sustained reduction of SI-LPLs after HFD feeding exacerbated indomethacin-induced small intestinal damage, lipotoxicity to the human intestines incurred by consuming a westernized diet in Japan may increase intestinal diseases such as IBD, colorectal cancer or food allergies.


Asunto(s)
Dieta Alta en Grasa , Ácidos Grasos no Esterificados/toxicidad , Sistema Inmunológico/patología , Mucosa Intestinal/patología , Animales , Atrofia , Colon/patología , Ácidos Grasos no Esterificados/sangre , Conducta Alimentaria , Microbioma Gastrointestinal/efectos de los fármacos , Sistema Inmunológico/efectos de los fármacos , Indometacina , Mucosa Intestinal/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Intestino Delgado/patología , Recuento de Linfocitos , Linfocitos/efectos de los fármacos , Tejido Linfoide/efectos de los fármacos , Tejido Linfoide/patología , Masculino , Ratones Endogámicos C57BL
9.
Biochem Biophys Res Commun ; 523(2): 328-335, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31864702

RESUMEN

Intraepithelial lymphocytes (IELs) are very unique in the intestinal immune system. They include γδT cells and CD4-CD8-TCRαß+T cells (double negative: DNT), both of which are specific for the intestine, in addition to CD4+ and CD8+ T cells. IELs exist within the monolayer of the intestinal epithelial cells and dynamically move between lamina propria (LP) and intraepithelial (IE) region. The localization and movement patterns of IEL subsets and the regulatory factors have been unknown. Here, we developed a novel in vitro live imaging system and quantified the motility and morphological changes among subsets of IELs. We identified CD8αα as the key regulatory factor. IELs, especially γδ and DNT cells, showed amoeboid shape and frequent morphological change, while most T cells in MLN or SP showed round shape in vitro. TCR signal, IL-15, gut microbes, CCL25, and integrin αEß7 expression were non-essential for IEL movement in vitro. CD8αα+ cells showed higher motility and larger morphological changes than CD8αα- cells. Adoptive transferred CD8αα+CD4-IELs localized to IE region of recipient NSG mice, while CD8αα-CD4-IELs localized to the LP. Our results showed that the CD8αα/TL signal is essential for the localization of IELs to IE region in vivo. CD8αα/TL may be an effective target to increase the number of IELs, which protects against intestinal infection, allergy, tumorigenesis or inflammation.


Asunto(s)
Antígenos CD8/metabolismo , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Linfocitos Intraepiteliales/citología , Linfocitos Intraepiteliales/inmunología , Traslado Adoptivo , Animales , Linfocitos T CD8-positivos/clasificación , Movimiento Celular/inmunología , Forma de la Célula , Quimiocinas CC/metabolismo , Femenino , Inmunidad Mucosa , Interleucina-15/metabolismo , Intestino Delgado/citología , Intestino Delgado/inmunología , Linfocitos Intraepiteliales/clasificación , Microscopía Intravital , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Ratones Transgénicos
10.
Biochem Biophys Res Commun ; 496(2): 367-373, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29330048

RESUMEN

Although previous studies have suggested that appendix seems to be involved in the colitis, the role of this in the pathogenesis remains unclear. In this study, we assessed the importance of appendiceal lymphoid follicles, specifically the cecal patches (CP) in mice, using an experimental colitis model. Treatment with oxazolone resulted in ulcerations particularly at CP with follicular expansion as well as colitis. The colitis was attenuated by either appendectomy or the absence of mature B cells. We therefore established an intravital imaging system accompanied by the fluorescence resonance energy transfer technology to analyze the dynamic immune response of CP B cells. Our observation revealed frequent Ca2+ signaling in CP B cells during the early phase of colitis development. These findings suggested that the CP B cells may be involved in the pathogenesis of colitis including inflammatory bowel diseases in humans.


Asunto(s)
Apéndice/inmunología , Ciego/inmunología , Colitis/inmunología , Colon/inmunología , Estructuras Linfoides Terciarias/inmunología , Animales , Apéndice/diagnóstico por imagen , Apéndice/patología , Linfocitos B/inmunología , Linfocitos B/patología , Señalización del Calcio , Ciego/diagnóstico por imagen , Ciego/patología , Colitis/inducido químicamente , Colitis/diagnóstico por imagen , Colitis/patología , Colon/diagnóstico por imagen , Colon/patología , Modelos Animales de Enfermedad , Humanos , Microscopía Intravital , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Oxazolona , Estructuras Linfoides Terciarias/diagnóstico por imagen , Estructuras Linfoides Terciarias/patología
11.
Biochem Biophys Res Commun ; 484(3): 636-641, 2017 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-28153718

RESUMEN

Genome-wide association studies have identified autophagy-related susceptibility genes for inflammatory bowel disease (IBD); however, whether autophagy regulators can be utilized as therapeutic targets remains unclear. To identify novel microtubule-associated protein 1 light chain 3 (LC3)-interacting proteins in intestinal epithelial cells (IECs), we isolated primary IECs from green fluorescent protein (GFP)-LC3 mice. We performed immunoprecipitation with a GFP antibody and then analyzed co-immunoprecipitates by mass spectrometry. HADHA was identified as an LC3-interacting protein from primary IECs. The HADHA gene encodes the alpha subunit of the mitochondrial trifunctional protein. Given that HADHA catalyzes the last three steps of mitochondrial beta-oxidation of long-chain fatty acids, we investigated whether long-chain fatty acids induce autophagy in IECs. We found that palmitic acid induced autophagy in DLD-1, HT29, and HCT116 cells. HADHA was expressed in not only the mitochondria but also the cytosol. LC3 puncta co-localized with HADHA, which were enhanced by palmitic acid stimulation. However, LC3 puncta did not co-localize with Tom20, suggesting that HADHA was induced to associate with LC3 puncta at sites other than the mitochondria. Thus, HADHA may have extra-mitochondrial functions. Furthermore, we found that palmitic acid induced cell death in IECs, which was accelerated by bafilomycin A and chloroquine. These findings suggested that palmitic acid-induced autophagy supports the survival of IECs. Taken together, these results suggested that HADHA is involved in long-chain fatty acid-induced autophagy in IECs, thus providing new insights into the pathology of IBD and revealing novel therapeutic targets of IBD.


Asunto(s)
Autofagia/fisiología , Ácidos Grasos/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína Trifuncional Mitocondrial/metabolismo , Animales , Alcaloides de Berberina/farmacología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Subunidades de Proteína
13.
Digestion ; 93(1): 40-6, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26789263

RESUMEN

Prolonged inflammatory bowel diseases (IBD) may lead to colitis-associated carcinogenesis (CAC). Previous studies had shown that nuclear factor-x03BA;B (NF-x03BA;B) activation in both macrophages and epithelia in inflamed colonic tissue is associated with CAC development. However, the mechanism by which epithelial NF-x03BA;B activation leading to CAC development had not previously been rigorously studied. We and others had observed the increased expression of the type 2 receptor for tumor necrosis factor (TNFR2/TNFRSF1b/p75) in IBD models. Myosin light chain kinase (MLCK) is suggested to be associated with epithelial permeability via TNF signaling. Therefore, the relationship between epithelial MLCK expression and NF-x03BA;B activation via TNFR2 signaling on CAC development was investigated. Pro-tumorigenic cytokines such as interleukin (IL)-1ß, IL-6 and macrophage inflammatory protein-2 at the lamina propria were increased in the setting of colitis and further increased in tumor tissues with upregulated epithelial TNFR2 and MLCK expressions in an animal model of CAC. The upregulated MLCK expression was also observed in TNF-stimulated colonic epithelial cells in vitro in association with the upregulation of TNFR2 but not TNFR1/TNFRSF1a/p55. Gene silencing of tnfrsf1b, but not tnfrsf1a, resulted in restoration of epithelial tight junction (TJ) associated with decreased MLCK expression. The presence of anti-TNF antibody also resulted in restoration of TJ in association with suppressed MLCK expression, and interestingly, similar results including the suppressed TNFR2 and MLCK expressions were observed by inhibiting MLCK in the epithelial cells. MLCK silencing also led to suppressed TNFR2 expression, suggesting that the restored TJ leads to reduced TNFR2 signaling. Such suppression of MLCK as well as blockade of TNFR2 signaling resulted in reduced CAC development, restored TJ, and decreased pro-tumorigenic cytokines. These imply that TNF-induced NF-x03BA;B activation and MLCK expression may be a potential target for the prevention of IBD-associated carcinogenesis.


Asunto(s)
Carcinogénesis/inmunología , Carcinoma/inmunología , Colitis/inmunología , Neoplasias del Colon/inmunología , Citocinas/inmunología , Células Epiteliales/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , FN-kappa B/inmunología , Animales , Humanos , Mucosa Intestinal , Quinasa de Cadena Ligera de Miosina/inmunología , Receptores Tipo I de Factores de Necrosis Tumoral/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología
14.
Cancer Sci ; 106(8): 1000-7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26017781

RESUMEN

Patients with inflammatory bowel disease (IBD) have an increased risk of developing colitis-associated colorectal cancer (CAC). CAC cells often develop chemoresistance, resulting in a poorer prognosis than that of sporadic colorectal cancer (CRC). The mechanism by which CAC enhances malignant potential remains unknown. We have previously reported that the proteasomal degradation of the transcription factor Atonal homolog 1 (Atoh1) protein results in the non-mucinous form of CRC. It also remains unknown whether Atoh1 protein is expressed in CAC. Therefore, in the present study, we investigated whether Atoh1 protein stabilizes in CAC. Consequently, the treatment with TNF-α stabilized Atoh1 protein through the inactivation of GSK-3ß via Akt, resulting in the mucinous form of CRC cell lines. Atoh1 protein also enriched cancer stem cells with upregulated Lgr5 expression and cells in G0/G1 cell cycle phase, resulting in both the chemoresistance to 5-fluorouracil and oxaliplatin and the promotion of cell migration. Immunofluorescence of the human mucinous CAC specimens showed the accumulation of NF-κB p65 at nuclei with the expression of Atoh1 in mucinous cancer. In conclusion, the inflammation associated with carcinogenesis may preserve the differentiation system of intestinal epithelial cell (IEC), resulting in the acquisition of both the mucinous phenotype and high malignant potential associated with the enrichment of cancer stem cell.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias Colorrectales/patología , Células Madre Neoplásicas/patología , Factor de Necrosis Tumoral alfa/metabolismo , Adulto , Western Blotting , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Femenino , Humanos , Enfermedades Inflamatorias del Intestino/complicaciones , Mucosa Intestinal/patología , Masculino , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa
15.
Biochem Biophys Res Commun ; 456(1): 298-304, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25450619

RESUMEN

RIPK3 is a key molecule for necroptosis, initially characterized by necrotic cell death morphology and the activation of autophagy. Cell death and autophagic signaling are believed to tightly regulate each other. However, the associated recruitment of signaling proteins remains poorly understood. p62/sequestosome-1 is a selective autophagy substrate and a selective receptor for ubiquitinated proteins. In this study, we illustrated that both mouse and human RIPK3 mediate p62 cleavage and that RIPK3 interacts with p62, resulting in complex formation. In addition, RIPK3-dependent p62 cleavage is restricted by the inhibition of caspases, especially caspase-8. Moreover, overexpression of A20, a ubiquitin-editing enzyme and an inhibitor of caspase-8 activity, inhibits RIPK3-dependent p62 cleavage. To further investigate the potential role of RIPK3 in selective autophagy, we analyzed p62-LC3 complex formation, revealing that RIPK3 prevents the localization of LC3 and ubiquitinated proteins to the p62 complex. In addition, RIPK3-dependent p62-LC3 complex disruption is regulated by caspase inhibition. Taken together, these results demonstrated that RIPK3 interacts with p62 and regulates p62-LC3 complex formation. These findings suggested that RIPK3 serves as a negative regulator of selective autophagy and provides new insights into the mechanism by which RIPK3 regulates autophagic signaling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Caspasa 8/metabolismo , Regulación Enzimológica de la Expresión Génica , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Apoptosis , Inhibidores Enzimáticos/química , Células HEK293 , Proteínas de Choque Térmico/metabolismo , Humanos , Ratones , Fagosomas/metabolismo , Unión Proteica , ARN Interferente Pequeño/metabolismo , Proteína Sequestosoma-1
16.
J Immunol ; 188(6): 2524-36, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22331065

RESUMEN

We previously reported that IL-7(-/-)RAG(-/-) mice receiving naive T cells failed to induce colitis. Such abrogation of colitis may be associated with not only incomplete T cell maintenance due to the lack of IL-7, but also with the induction of colitogenic CD4(+) T cell apoptosis at an early stage of colitis development. Moreover, NK cells may be associated with the suppression of pathogenic T cells in vivo, and they may induce apoptosis of CD4(+) T cells. To further investigate these roles of NK cells, RAG(-/-) and IL-7(-/-)RAG(-/-) mice that had received naive T cells were depleted of NK cells using anti-asialo GM1 and anti-NK1.1 Abs. NK cell depletion at an early stage, but not at a later stage during colitogenic effector memory T cell (T(EM)) development, resulted in exacerbated colitis in recipient mice even in the absence of IL-7. Increased CD44(+)CD62L(-) T(EM) and unique CD44(-)CD62L(-) T cell subsets were observed in the T cell-reconstituted RAG(-/-) recipients when NK cells were depleted, although Fas, DR5, and IL-7R expressions in this subset differed from those in the CD44(+)CD62L(-) T(EM) subset. NK cell characteristics were the same in the presence or absence of IL-7 in vitro and in vivo. These results suggest that NK cells suppress colitis severity in T cell-reconstituted RAG(-/-) and IL-7(-/-)RAG(-/-) recipient mice through targeting of colitogenic CD4(+)CD44(+)CD62L(-) T(EM) and, possibly, of the newly observed CD4(+)CD44(-)CD62L(-) subset present at the early stage of T cell development.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Colitis/inmunología , Interleucina-7/inmunología , Células Asesinas Naturales/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Separación Celular , Colitis/patología , Modelos Animales de Enfermedad , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
17.
Front Immunol ; 15: 1340048, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38327516

RESUMEN

Recent advances in research suggest that aging has a controllable chronic inflammatory disease aspect. Aging systemic T cells, which secrete pro-inflammatory factors, affect surrounding somatic cells, and accelerate the aging process through chronic inflammation, have attracted attention as potential therapeutic targets in aging. On the other hand, there are few reports on the aging of the intestinal immune system, which differs from the systemic immune system in many ways. In the current study, we investigated the age-related changes in the intestinal immune system, particularly in T cells. The most significant changes were observed in the CD4+ T cells in the small intestinal IEL, with a marked increase in this fraction in old mice and reduced expression of CD27 and CD28, which are characteristic of aging systemic T cells. The proliferative capacity of aging IEL CD4+ T cells was significantly more reduced than that of aging systemic T cells. Transcriptome analysis showed that the expression of inflammatory cytokines was not upregulated, whereas Cd8α, NK receptors, and Granzymes were upregulated in aging IEL CD4+ T cells. Functional analysis showed that aging IEL T cells had a higher cytotoxic function against intestinal tumor organoids in vitro than young IEL T cells. scRNAseq revealed that splenic T cells show a transition from naïve to memory T cells, whereas intestinal T cells show the emergence of a CD8αα+CD4+ T cell fraction in aged mice, which is rarely seen in young cells. Further analysis of the aging IEL CD4+ T cells showed that two unique subsets are increased that are distinct from the systemic CD4+ T cells. Subset 1 has a pro-inflammatory component, with expression of IFNγ and upregulation of NFkB signaling pathways. Subset 2 does not express IFNγ, but upregulates inhibitory molecules and nIEL markers. Expression of granzymes and Cd8a was common to both. These fractions were in opposite positions in the clustering by UMAP and had different TCR repertoires. They may be involved in the suppression of intestinal aging and longevity through anti-tumor immunity, elimination of senescent cells and stressed cells in the aging environment. This finding could be a breakthrough in aging research.


Asunto(s)
Linfocitos Intraepiteliales , Ratones , Animales , Linfocitos T CD4-Positivos , Granzimas , Subgrupos de Linfocitos T , Análisis de la Célula Individual
18.
Biochem Biophys Res Commun ; 419(2): 238-43, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22342245

RESUMEN

P-glycoprotein (P-gp) is an efflux transporter that regulates bioavailability of orally administered drugs at the intestinal epithelium. To develop an in vitro experimental model that mimics P-gp-mediated intestinal drug transport in vivo, we employed normal intestinal epithelium three-dimensionally cultured. Physiological expression of P-gp mRNA and the expression of its protein at the apical membrane were observed in the small intestinal epithelium grown as cystic organoids. Rhodamine123 (Rh123), a substrate for P-gp, was actively transported in the basoapical direction and accumulated in the luminal space, while the epithelial integrity was kept intact. Furthermore, we were able to monitor the whole process of Rh123 transport and its inhibition by verapamil in real-time, from which kinetic parameters for Rh123 transport could be estimated by a mathematical modeling. The method here described to evaluate the dynamics of P-gp-mediated transport in primary intestinal epithelial cells would be instrumental in investigating the physiological function of P-gp and its inhibitors/inducers in vitro.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Mucosa Intestinal/metabolismo , Modelos Biológicos , Farmacocinética , Animales , Disponibilidad Biológica , Transporte Biológico , Técnicas de Cultivo de Célula , Células Cultivadas , Colorantes Fluorescentes/farmacocinética , Ratones , Ratones Endogámicos C57BL , Rodamina 123/farmacocinética , Verapamilo/farmacocinética
19.
Cell Mol Gastroenterol Hepatol ; 13(1): 81-93, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34461283

RESUMEN

BACKGROUND & AIMS: Mucosal-associated invariant T (MAIT) cells are innate-like T cells restricted by major histocompatibility complex-related molecule 1 (MR1) and express a semi-invariant T cell receptor. Previously, we reported the activation status of circulating MAIT cells in patients with ulcerative colitis (UC) was associated with disease activity and that these cells had infiltrated the inflamed colonic mucosa. These findings suggest MAIT cells are involved in the pathogenesis of inflammatory bowel disease. We investigated the role of MAIT cells in the pathogenesis of colitis by using MR1-/- mice lacking MAIT cells and a synthetic antagonistic MR1 ligand. METHODS: Oxazolone colitis was induced in MR1-/- mice (C57BL/6 background), their littermate wild-type controls, and C57BL/6 mice orally administered an antagonistic MR1 ligand, isobutyl 6-formyl pterin (i6-FP). Cytokine production of splenocytes and colonic lamina propria lymphocytes from mice receiving i6-FP was analyzed. Intestinal permeability was assessed in MR1-/- and i6-FP-treated mice and their controls. The effect of i6-FP on cytokine production by MAIT cells from patients with UC was assessed. RESULTS: MR1 deficiency or i6-FP treatment reduced the severity of oxazolone colitis. i6-FP treatment reduced cytokine production in MAIT cells from mice and patients with UC. Although MR1 deficiency increased the intestinal permeability, i6-FP administration did not affect gut integrity in mice. CONCLUSIONS: These results indicate MAIT cells have a pathogenic role in colitis and suppression of MAIT cell activation might reduce the severity of colitis without affecting gut integrity. Thus, MAIT cells are potential therapeutic targets for inflammatory bowel disease including UC.


Asunto(s)
Colitis Ulcerosa , Enfermedades Inflamatorias del Intestino , Células T Invariantes Asociadas a Mucosa , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/patología , Modelos Animales de Enfermedad , Humanos , Enfermedades Inflamatorias del Intestino/patología , Ratones , Ratones Endogámicos C57BL
20.
Nat Med ; 10(5): 535-9, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15107843

RESUMEN

CD1d is a major histocompatibility complex (MHC) class I-related molecule that functions in glycolipid antigen presentation to distinct subsets of T cells that express natural killer receptors and an invariant T-cell receptor-alpha chain (invariant NKT cells). The acquisition of glycolipid antigens by CD1d occurs, in part, in endosomes through the function of resident lipid transfer proteins, namely saposins. Here we show that microsomal triglyceride transfer protein (MTP), a protein that resides in the endoplasmic reticulum of hepatocytes and intestinal epithelial cells (IECs) and is essential for lipidation of apolipoprotein B, associates with CD1d in hepatocytes. Hepatocytes from animals in which Mttp (the gene encoding MTP) has been conditionally deleted, and IECs in which Mttp gene products have been silenced, are unable to activate invariant NKT cells. Conditional deletion of the Mttp gene in hepatocytes is associated with a redistribution of CD1d expression, and Mttp-deleted mice are resistant to immunopathologies associated with invariant NKT cell-mediated hepatitis and colitis. These studies indicate that the CD1d-regulating function of MTP in the endoplasmic reticulum is complementary to that of the saposins in endosomes in vivo.


Asunto(s)
Antígenos CD1/fisiología , Proteínas Portadoras/fisiología , Abetalipoproteinemia/genética , Abetalipoproteinemia/patología , Abetalipoproteinemia/fisiopatología , Animales , Antígenos CD1d , Secuencia de Bases , Proteínas Portadoras/genética , ADN Complementario/genética , Retículo Endoplásmico/fisiología , Silenciador del Gen , Hepatocitos/inmunología , Hepatocitos/fisiología , Células Asesinas Naturales/inmunología , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Subgrupos de Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA