Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Langmuir ; 37(14): 4380-4386, 2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33793253

RESUMEN

As a novel functional surface, a self-oscillating polymer brush that undergoes autonomous, periodic swelling/deswelling during the Belousov-Zhabotinsky (BZ) reaction has been developed. Although extensive research has revealed how the fundamental aspects of the BZ reaction can be regulated based on the surface design of the self-oscillating polymer brush, design strategies for the induction of mechanical oscillation remain unexplored. Herein, we investigated the graft density effects on the phase transition behavior, which is an important design parameter for the mechanical oscillation of the modified polymer. The self-oscillating polymer-modified substrates with controlled graft densities were prepared by immobilizing various compositions of an initiator and a noninitiator followed by surface-initiated atom transfer radical polymerization of the self-oscillating polymer chains. In addition to the characterization of each prepared substrate, atomic force microscopy (AFM) and digital holographic microscopy (DHM) were employed to evaluate the density effects on the static and dynamic surface structures. AFM revealed that equilibrium swelling as well as thermoresponsive behavior is profoundly affected by the graft density. Moreover, using DHM, autonomous mechanical oscillation was captured only on the self-oscillating polymer brush with adequate graft density. Notably, the oscillation amplitude (150 nm) and the period (20 s) in this study were superior to those in a previous report on the self-oscillating polymer modified through the grafting-to method by 10- and 3-fold, respectively. This study presents design guidelines for future applications, such as autonomous transport devices.

2.
Anal Bioanal Chem ; 412(22): 5341-5351, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32529301

RESUMEN

Oligonucleotide therapeutics have contributed remarkably to healthcare, being well suited for the treatment of intractable diseases that are difficult to approach using conventional drug modalities. However, as common techniques of oligonucleotide analysis rely on reversed-phase or ion-exchange liquid chromatography and thus employ toxic organic solvents and/or ion-pairing reagents, better alternatives are highly sought after. Poly(N-isopropylacrylamide) (PNIPAAm) is widely used in temperature-responsive chromatography (TRC), which relies on column temperature variation to control the physical properties of the stationary phase and, unlike conventional reversed-phase liquid chromatography, avoids the use of toxic organic solvents and complicated gradient methods. Herein, PNIPAAm copolymer hydrogel-modified silica beads were used for the simultaneous analysis of multiple synthetic oligonucleotides by TRC to recognize differences in the length of single nucleotides, single bases, and the number of phosphorothioated sites. Temperature-responsive elution was observed in all cases. Each separation of all combinations of multiple oligonucleotides was better at higher temperatures above the lower critical solution temperature and was performed without the use of organic solvents and gradient methods. In the case of multiply phosphorothioated oligonucleotides, good separation was achieved using an aqueous solvent and isocratic elution in the absence of ion-pairing reagents. Thus, the developed procedure was concluded to be well suited for oligonucleotide analysis. Graphical abstract.


Asunto(s)
Resinas Acrílicas/química , Cromatografía por Intercambio Iónico/métodos , Cromatografía de Fase Inversa/métodos , Oligonucleótidos/análisis , Hidrogeles/química , Dióxido de Silicio/química , Espectrofotometría Ultravioleta , Temperatura
3.
Macromol Rapid Commun ; 41(19): e2000308, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32808359

RESUMEN

Recently, cell separation methods have become important for preparing cells for transplantation therapy. In this study, a thermoresponsive cationic block copolymer brush is developed as an effective cell separation tool. This brush is prepared on glass surfaces using two steps of activator regenerated by electron transfer-atom transfer radical polymerization (ARGET-ATRP). The cationic segment is prepared in the first step of the ARGET-ATRP of N,N-dimethylaminopropylacrylamide (DMAPAAm). In the second step, the thermoresponsive segment is prepared, attached to the bottom cationic segment, through ARGET-ATRP with N-isopropylacrylamide (NIPAAm). The cell adhesion behavior of the prepared thermoresponsive cationic copolymer, PDMAPAAm-b-PNIPAAm, brush is observed using umbilical cord-derived mesenchymal stem cells (UCMSC), fibroblasts, and macrophages. At 37 °C, all three types of cells adhere to the thermoresponsive cationic copolymer brush. Then, by reducing the temperature to 20 °C, the adhered UCMSC are detached from the copolymer brush, whereas the fibroblasts and macrophages remain adhered to the copolymer brush. Using this copolymer brush, UCMSC can be purified from the cell mixture simply by changing the temperature. Therefore, the prepared thermoresponsive cationic copolymer brush is useful as a cell separation tool for the purification of mesenchymal stem cells.


Asunto(s)
Polímeros , Separación Celular , Polimerizacion , Propiedades de Superficie , Temperatura
4.
Langmuir ; 35(30): 9794-9801, 2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31288512

RESUMEN

We developed an autonomous functional surface, named a "self-oscillating polymer brush surface", which exhibits swelling-deswelling of the modified polymer chains synchronized with the Belousov-Zhabotinsky (BZ) reaction. The grafted polymer chain is a random copolymer composed of thermoresponsive N-isopropylacrylamide, N-(3-aminopropyl)methacrylamide, and ruthenium tris(2,2'-bipyridine) [Ru(bpy)3]. To provide stable oscillations over a long period of time, suppression of the dilution of the BZ reactants inside the polymer surface and the increase in the amount of immobilized Ru(bpy)3 are important. Here, we modified the self-oscillating polymer brush on a porous glass substrate and characterized its dynamic behavior. The increased surface area of the porous glass allowed for an efficient introduction of the metal catalyst, which resulted in a stable BZ reaction observable by optical microscopy. Compared with an aqueous BZ solution and the self-oscillating polymer modified on a glass coverslip, the wave velocity and diffusion coefficient were significantly lower for the porous glass system, which suggested that the reaction-diffusion of the reactants was markedly different than those of the other two systems. Moreover, the wave velocity was unchanged on the porous glass system for 1 h, whereas that of the solution dropped by 30 µm s-1. Waveform analyses based on the Field-Körös-Noyes mechanism revealed that densely packed Ru(bpy)3 in the porous glass system affects the duration of the key processes in the BZ reaction. These findings can help with understanding the dynamic behavior of the self-oscillating polymer brush on a porous glass substrate. Stable self-oscillations on the polymer brush-grafted porous glass substrate will aid future applications such as mass transport systems.

5.
Biomacromolecules ; 20(4): 1748-1755, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30785729

RESUMEN

The cell manipulation technique using thermoresponsive polymers is currently attracting much attention for applications in the medical field. To achieve arbitrary and accurate cell control, it is necessary to intensely research fibronectin behavior. A smart surface, which has thermoresponsive wettability and which can adsorb or desorb fibronectin repeatedly without the presence of cells, was fabricated by an electrospinning method. The fabricated coating changed its structure as the temperature was changed, and this transformation could substitute for the pulling force generated by the cytoskeletal contraction of cells. Moreover, a coated quartz crystal microbalance was able to detect the fibronectin behavior as frequency shifts, which could be used in the estimation of the mass shift with the aid of suitable equations. This coating and measurement system can contribute greatly not only to the development in the medical field centered on biomaterial manipulation technologies, but also to the improvement of medical instruments.


Asunto(s)
Materiales Biocompatibles/química , Fibronectinas/química , Tecnicas de Microbalanza del Cristal de Cuarzo , Propiedades de Superficie
6.
Macromol Rapid Commun ; 40(23): e1900464, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31692103

RESUMEN

Stimuli-responsive smart materials are a key to the realization of next-generation medical technologies. Among them, the temperature-responsive polymer poly(N-isopropylacrylamide) (PNIPAAm) is attracting particular attention because it is easy to use in physiological conditions. PNIPAAm-grafted surfaces can undergo temperature-modulated cell adhesion and detachment without proteolytic enzymes, and can be used as cell-separating materials through selective cell adhesion/detachment. However, cell detachment at reduced temperatures is problematic because it takes several hours. A novel thermoresponsive crosslinked microfiber system that can greatly reduce the cell detachment time is introduced in this study. The crosslinked fibers provide temperature-dependent volume change, and enable cell detachment within 10 min of reducing the temperature, which is one-sixth of the time required in previous studies. The prompt cell detachment is thought to arise from a completely new mechanism derived from fiber swelling. This system will make a significant contribution as a novel cell manipulating system for next-generation medical technology.


Asunto(s)
Resinas Acrílicas/química , Materiales Biocompatibles/química , Reactivos de Enlaces Cruzados/química , Animales , Adhesión Celular , Ratones , Microscopía Confocal , Células 3T3 NIH , Tamaño de la Partícula , Propiedades de Superficie , Temperatura
7.
Int J Mol Sci ; 20(2)2019 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-30669495

RESUMEN

Small interfering RNAs (siRNAs) have been attracting significant attention owing to their gene silencing properties, which can be utilized to treat intractable diseases. In this study, two temperature-responsive liposomal siRNA carriers were prepared by modifying liposomes with different polymers-poly(N-isopropylacrylamide-co-N,N-dimethylaminopropyl acrylamide) (P(NIPAAm-co-DMAPAAm)) and poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) P(NIPAAm-co-DMAAm). The phase transition of P(NIPAAm-co-DMAPAAm) was sharper than that of P(NIPAAm-co-DMAAm), which is attributed to the lower co-monomer content. The temperature dependent fixed aqueous layer thickness (FALT) of the prepared liposomes indicated that modifying liposomes with P(NIPAAm-co-DMAPAAm) led to a significant change in the thickness of the fixed aqueous monolayer between 37 °C and 42 °C; while P(NIPAAm-co-DMAAm) modification led to FALT changes over a broader temperature range. The temperature-responsive liposomes exhibited cellular uptake at 42 °C, but were not taken up by cells at 37 °C. This is likely because the thermoresponsive hydrophilic/hydrophobic changes at the liposome surface induced temperature-responsive cellular uptake. Additionally, siRNA transfection of cells for the prevention of luciferase and vascular endothelial growth factor (VEGF) expression was modulated by external temperature changes. P(NIPAAm-co-DMAPAAm) modified liposomes in particular exhibited effective siRNA transfection properties with low cytotoxicity compared with P(NIPAAm-co-DMAAm) modified analogues. These results indicated that the prepared temperature-responsive liposomes could be used as effective siRNA carriers whose transfection properties can be modulated by temperature.


Asunto(s)
Liposomas , Transición de Fase , Polímeros/química , ARN Interferente Pequeño/genética , Temperatura , Transfección , Línea Celular , Supervivencia Celular , Expresión Génica , Silenciador del Gen , Genes Reporteros , Humanos , Liposomas/química , Espectroscopía de Resonancia Magnética , Estructura Molecular , Peso Molecular , Interferencia de ARN , Termodinámica , Transfección/métodos
8.
Langmuir ; 34(4): 1673-1680, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29281793

RESUMEN

We have developed a novel polymer brush surface exhibiting autonomous swelling-deswelling changes driven by the Belousov-Zhabotinsky (BZ) reaction, that is, the self-oscillating polymer brush. In this system, the ruthenium tris(2,2'-bipyridine) [Ru(bpy)3] catalyst-conjugated polymer chains are densely packed on the solid substrate. It is expected that the BZ reaction in the polymer brush would be influenced by the immobilization effect of the catalyst. To clarify the effect of the immobilization of the catalyst on the self-oscillating polymer brush, the self-oscillating behavior of the polymer brush was investigated by comparing it with that of other self-oscillating polymer materials, the free polymer, and the gel particle under various initial substrate concentrations. The initial substrate dependency of the oscillating period for the polymer brush was found to be different from those for the free polymer and the gel particle. Furthermore, the oscillatory waveform was analyzed on the basis of the Field-Körös-Noyes model. These investigations revealed that the dense immobilization of the self-oscillating polymer on the surface restricted accessibility for the Ru(bpy)3 moiety. These findings would be helpful in understanding the reaction-diffusion mechanism in the polymer brush, which is a novel reaction medium for the BZ reaction.

9.
Int J Mol Sci ; 19(4)2018 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-29690540

RESUMEN

We prepared thermoresponsive hydrogels by mixing poly(N-isopropylacrylamide) (PNIPAAm) derivatives as the main chain components, octa-arm polyethylene glycol (PEG) as a crosslinker, and the Arg-Gly-Asp-Ser (RGDS) peptides as cell adhesion units. Human bone marrow-derived mesenchymal stem cells (hbmMSCs) were cultured on the hydrogels. The PNIPAAm gel prepared by the post-crosslinking gelation method was revealed to be cytocompatible and showed temperature-dependent changes in mechanical properties. Repeated changes in the swelling ratio of the PNIPAAm gel affected the shape of the hbmMSCs. With respect to both cytocompatibility and reversibility of changes in mechanical properties, the PNIPAAm gel system could be potentially useful for the analysis of cell mechanobiology.


Asunto(s)
Resinas Acrílicas/química , Hidrogeles/química , Células Madre Mesenquimatosas/fisiología , Biofisica/métodos , Células Cultivadas , Humanos , Polietilenglicoles/química , Temperatura , Ingeniería de Tejidos/métodos
10.
Int J Mol Sci ; 19(6)2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29865203

RESUMEN

L-type amino acid transporter 1 (LAT1) is more highly expressed in cancer cells compared with normal cells. LAT1 targeting probes would therefore be a promising tool for cancer cell imaging. In this study, LAT1-targeting thermoresponsive fluorescent polymer probes based on poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) (P(NIPAAm-co-DMAAm)) were synthesized and their affinity for LAT1 was evaluated. The synthesized polymer probes interacted with LAT1 on HeLa cells, and inhibition of l-[³H]-leucine, one of the substrates for LAT1 uptake, was investigated. l-Tyrosine-conjugated P(NIPAAm-co-DMAAm) inhibited the uptake of l-[³H]-leucine, while P(NIPAAm-co-DMAAm) and l-phenylalanine-conjugated P(NIPAAm-co-DMAAm) did not. This result indicated that l-tyrosine-conjugated polymer has a high affinity for LAT1. The fluorescent polymer probes were prepared by modification of a terminal polymer group with fluorescein-5-maleimide (FL). Above the polymer transition temperature, cellular uptake of the polymer probes was observed because the polymers became hydrophobic, which enhanced the interaction with the cell membrane. Furthermore, quantitative analysis of the fluorescent probe using flow cytometry indicated that l-tyrosine-conjugated P(NIPAAm-co-DMAAm)-FL shows higher fluorescence intensity earlier than P(NIPAAm-co-DMAAm)-FL. The result suggested that cellular uptake was promoted by the LAT1 affinity site. The developed LAT1-targeting thermoresponsive fluorescent polymer probes are expected to be useful for cancer cell imaging.


Asunto(s)
Colorantes Fluorescentes/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Imagen Molecular/métodos , Neoplasias/diagnóstico por imagen , Polímeros/metabolismo , Acrilamidas/química , Colorantes Fluorescentes/química , Células HeLa , Calor , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Transportador de Aminoácidos Neutros Grandes 1/química , Transportador de Aminoácidos Neutros Grandes 1/efectos de los fármacos , Leucina/metabolismo , Neoplasias/metabolismo , Polímeros/química
11.
Small ; 13(21)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28383186

RESUMEN

The propagation control of chemical waves via a pentagonal patterned structure in a self-oscillating polymer brush composed of N-isopropylacrylamide and a metal catalyst for the Belousov-Zhabotinsky (BZ) reaction is reported. The patterned self-oscillating polymer brush is prepared by combining surface-initiated atom transfer radical polymerization and maskless photolithography. Surface modification is confirmed by X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, 3D measuring laser microscopy, and fluorescence microscopy. The polymer brush patterns are fabricated with gaps between the pentagonal regions, and investigations on the effect of the gap distance on the BZ reaction reveal that at the appropriate distance, chemical waves propagate across the array from the plane to the corner between the patterns. Unidirectional control is achieved not only in the 1D array, but also in a 2D curved array. This patterned self-oscillating polymer brush is a novel and advantageous approach for creating an autonomous dynamic soft interface.

12.
Biomacromolecules ; 16(2): 532-40, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25517012

RESUMEN

Thermoresponsive, cationic, copolymer brushes poly(N-isopropylacrylamide(IPAAm)-co-N,N-dimethylaminopropylacrylamide-co-N-tert-butylacrylamide(tBAAm)) and poly(IPAAm-co-3-acrylamidopropyl trimethylammonium chloride-co-tBAAm) were prepared on glass substrates through surface-initiated atom transfer radical polymerization. Prepared copolymer brushes were investigated as thermally modulated cell separation materials. Densely packed cationic copolymer brushes were formed on the glass substrates, and the positive charge density was modulated by controlling the composition of cationic moieties and species. During observation of cell adhesion and detachment properties on copolymer brushes, human bone marrow mesenchymal stem cells (hbmMSC) exhibited thermally modulated cell adhesion and detachment, while other bone-marrow-derived cells did not adhere. Using these properties, hbmMSC could be purified from mixtures of human bone-marrow-derived cells simply by changing the external temperature. Therefore, the prepared cationic copolymer brush is useful for separation of hbmMSC.


Asunto(s)
Separación Celular/métodos , Células Madre Mesenquimatosas/citología , Polímeros/química , Temperatura , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Polimerizacion , Polímeros/farmacología
13.
Macromol Rapid Commun ; 36(22): 1965-70, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26375171

RESUMEN

Thermoresponsive polymer brushes are grafted on micro/nanostructured polymer substrates as new intelligent interfaces that synergistically enhance wettability changes in response to external temperature stimuli. Thermoplastic poly(styrene-co-4-vinylbenzyl chloride) [P(St-co-VBC)] is synthesized using radical polymerization and spin-coated on a glass substrate. Micro/nanopillar and hole patterns are imprinted on the P(St-co-VBC) layer using thermal nanoimprint lithography. Poly(N-isopropylacrylamide) (PIPAAm) brushes are grafted on the micro/nanostructured P(St-co-VBC) layer through surface-initiated atom-transfer radical polymerization using 4-vinylbenzyl chloride as the initiator. The imprinted micro/nanostructures and grafted PIPAAm brush chain lengths affect the surface wettability. Combinations of nanopillars or nanoholes (diameter 500 nm) and longer PIPAAm brushes enhance hydrophobic/hydrophilic changes in response to temperature changes, compared with the flat substrate. The thermoresponsive hydrophobic/hydrophilic transition is synergistically enhanced by the nanostructured surface changing from Cassie-Baxter to Wenzel states. This PIPAAm-brush-modified micro/nanostructured P(St-co-VBC) is a new intelligent interface that effectively changes wettability in response to external temperature changes.


Asunto(s)
Resinas Acrílicas/química , Nanoestructuras/química , Poliestirenos/química , Interacciones Hidrofóbicas e Hidrofílicas , Impresión Molecular , Estructura Molecular , Polimerizacion , Propiedades de Superficie , Temperatura , Humectabilidad
14.
Biomacromolecules ; 15(10): 3846-58, 2014 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-25220634

RESUMEN

A thermoresponsive copolymer brush possessing the sulfonic acid group, poly(N-isopropylacrylamide (IPAAm)-co-2-acrylamido-2-methylpropanesulfonic acid (AMPS)-co-tert-butylacrylamide (tBAAm)), was grafted onto the surface of silica beads through surface-initiated atom transfer radical polymerization. Prepared copolymer and copolymer brushes on silica beads were characterized by observing the phase transition profile, CHNS elemental analysis, X-ray photoelectron spectroscopy, and gel permeation chromatography. The phase transition profile indicated that an appropriate AMPS composition for enabling thermally modulated property changes is 5 mol %, while excessive amounts of sulfonic acid groups prevented copolymer phase transition. Chromatographic elutions of catecholamine derivatives and basic proteins were observed, using the prepared copolymer brush-modified beads as chromatographic matrices, and the results suggest that the beads interact with these analytes through relatively strong electrostatic interactions. Thus, poly(IPAAm-co-AMPS-co-tBAAm) brush-modified beads will be useful for effective thermoresponsive chromatography matrices that separate basic biomolecules through strong electrostatic interactions.


Asunto(s)
Aniones/química , Polímeros/química , Proteínas/química , Acrilamidas/química , Cromatografía en Gel/métodos , Transición de Fase , Espectroscopía de Fotoelectrones/métodos , Polimerizacion , Dióxido de Silicio/química , Electricidad Estática , Ácidos Sulfónicos/química , Propiedades de Superficie , Temperatura
15.
Biomacromolecules ; 15(4): 1204-15, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24552290

RESUMEN

Thermoresponsive anionic copolymer brushes, poly(N-isopropylacrylamide-co-acrylic acid-co-tert-butylacrylamide) [P(IPAAm-co-AAc-co-tBAAm)], were grafted onto a monolithic silica rod column through surface-initiated atom-transfer radical polymerization (ATRP) to prepare an effective thermoresponsive anionic chromatography matrix. An ATRP initiator was attached to the rod surface. N-Isopropylacrylamide (IPAAm), tert-butyl acrylate (tBA), tert-butylacrylamide (tBAAm), and the ATRP catalyst CuCl/CuCl2/tris[2-(N,N-dimethylamino)ethyl]amine were dissolved in 2-propanol, and the reaction mixture was pumped into the initiator-modified column. After grafting P(IPAAm-co-tBA-co-tBAAm) on the monolithic silica surfaces, deprotection of the tert-butyl group of tBA was performed. Chromatographic analysis showed that the prepared column was able to separate catecholamine derivatives and angiotensin subtypes within a shorter analysis time (5 min) than a silica-bead-packed column modified with the same copolymer brush could. These results indicated that the prepared copolymer-modified monolithic silica rod column may be a promising bioanalytical and bioseparation tool for rapid analysis of basic bioactive compounds and peptides.


Asunto(s)
Cromatografía/instrumentación , Péptidos/aislamiento & purificación , Polímeros/química , Acrilamidas/química , Adsorción , Angiotensinas/aislamiento & purificación , Catecolaminas/aislamiento & purificación , Cromatografía/métodos , Cromatografía en Gel , Espectroscopía de Fotoelectrones , Polimerizacion , Polímeros/síntesis química , Dióxido de Silicio/química , Propiedades de Superficie , Temperatura
16.
Biomacromolecules ; 15(3): 1031-43, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24467304

RESUMEN

A thermoresponsive copolymer incorporating a quaternary amine group, poly(N-isopropylacrylamide-co-3-acrylamidopropyl trimethylammonium chloride (APTAC)-co-tert-butylacrylamide), was conjugated to the surface of silica beads through surface-initiated atom transfer radical polymerization. Prepared copolymer- and copolymer brush-modified beads were characterized by CHN elemental analysis, X-ray photoelectron spectroscopy, gel permeation chromatography, and observation of phase transition profiles. Phase transition profiles of the prepared copolymer indicated that 5 mol % APTAC is suitable for enabling thermally modulated property changes in the copolymer. Chromatographic elution behaviors of adenosine nucleotides and proteins were observed using prepared beads as chromatography matrices. Higher retention time of adenosine nucleotides and strong protein adsorption behavior were observed compared with those on beads with tertiary amine groups, because of the strong basic properties. Therefore, copolymer brush modified beads will be useful as thermoresponsive ion-exchange chromatographic matrices.


Asunto(s)
Resinas Acrílicas/química , Polímeros/química , Proteínas/química , Adsorción , Aniones , Cromatografía por Intercambio Iónico , Espectroscopía de Fotoelectrones , Polimerizacion , Dióxido de Silicio/química , Propiedades de Superficie , Temperatura
17.
Anal Sci ; 40(5): 827-841, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38584205

RESUMEN

In recent decades, various bioanalytical technologies have been investigated for appropriate medical treatment and effective therapy. Temperature-responsive chromatography is a promising bioanalytical technology owing to its functional properties. Temperature-responsive chromatography uses a poly(N-isopropylacrylamide)(PNIPAAm) modified stationary phase as the column packing material. The hydrophobic interactions between PNIPAAm and the analyte could be modulated by changing the column temperature because of the temperature-responsive hydrophobicity of PNIPAAm. Thus, the chromatography system does not require organic solvents in the mobile phase, making it suitable for therapeutic drug monitoring in medical settings such as hospitals. This review summarizes recent developments in temperature-responsive chromatography systems for therapeutic drug monitoring applications. In addition, separation methods for antibody drugs using PNIPAAm are also summarized because these methods apply to the therapeutic drug monitoring of biopharmaceutics. The temperature-responsive chromatography systems can also be utilized for clinical diagnosis, as they can assess multiple medicines simultaneously. This highlights the significant potential of temperature-responsive chromatography in medicine and healthcare.


Asunto(s)
Temperatura , Humanos , Resinas Acrílicas/química , Polímeros/química , Monitoreo de Drogas/métodos
18.
Regen Ther ; 26: 80-88, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38841206

RESUMEN

Introduction: Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) are promising candidates for stem cell therapy. Various methods such as enzymatic treatment, cell scraping, and temperature reduction using temperature-responsive cell culture dishes have been employed to culture and harvest UC-MSCs. However, the effects of different harvesting methods on cell properties and functions in vitro remain unclear. In this study, we investigated the properties and functions of UC-MSC using various cell-harvesting methods. Methods: UC-MSC suspensions were prepared using treatments with various enzymes, cell scraping, and temperature reduction in temperature-responsive cell culture dishes. UC-MSC sheets were prepared in a temperature-responsive cell culture dish. The properties and functions of the UC-MSC suspensions and sheets were assessed according to Annexin V staining, lactate dehydrogenase (LDH) assay, re-adhesion behavior, and cytokine secretion analysis via enzyme-linked immunosorbent assay. Results: Annexin V staining revealed that accutase induced elevated UC-MSC apoptosis. Physical scraping using a cell scraper induced a relatively high LDH release due to damaged cell membranes. Dispase exhibited relatively low adhesion from initial incubation until 3 h. UC-MSC sheets exhibited rapid re-adhesion at 15 min and cell migration at 6 h. UC-MSC sheets expressed higher levels of cytokines such as HGF, TGF-ß1, IL-10, and IL-6 than did UC-MSCs in suspension. Conclusions: The choice of enzyme and physical scraping methods for harvesting UC-MSCs significantly influenced their activity and function. Thus, selecting appropriate cell-harvesting methods is important for successful stem cell therapy.

19.
Regen Ther ; 27: 259-267, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38601885

RESUMEN

Introduction: Vascular tissue engineering is a key technology in the field of regenerative medicine. In tissue engineering, the separation of vascular cells without cell modification is required, as cell modifications affect the intrinsic properties of the cells. In this study, we have developed an effective method for separating vascular cells without cell modification, using a thermoresponsive anionic block copolymer. Methods: A thermoresponsive anionic block copolymer, poly(acrylic acid)-b-poly(N-isopropylacryl-amide) (PAAc-b-PNIPAAm), with various PNIPAAm segment lengths, was prepared in two steps: atom transfer radical polymerization and subsequent deprotection. Normal human umbilical vein endothelial cells (HUVECs), normal human dermal fibroblasts, and human aortic smooth muscle cells (SMCs) were seeded onto the prepared thermoresponsive anionic block copolymer brush-modified glass. The adhesion behavior of cells on the copolymer brush was observed at 37 °C and 20 °C. Results: A thermoresponsive anionic block copolymer, poly(acrylic acid)-b-poly(N-isopropylacrylamide) (PAAc-b-PNIPAAm), with various PNIPAAm segment lengths was prepared. The prepared copolymer-modified glass exhibited anionic properties attributed to the bottom PAAc segment of the copolymer brush. On the PAAc-b-PNIPAAm, which had a moderate PNIPAAm length, a high adhesion ratio of HUVECs and low adhesion ratio of SMCs were observed at 37 °C. By reducing temperature from 37 °C to 20 °C, the adhered HUVECs were detached, whereas the SMCs maintained adhesion, leading to the recovery of purified HUVECs by changing the temperature. Conclusions: The prepared thermoresponsive anionic copolymer-modified glass could be used to separate HUVECs and SMCs by changing the temperature without modifying the cell surface. Therefore, the developed cell separation method will be useful for vascular tissue engineering.

20.
Heliyon ; 10(15): e34668, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39161811

RESUMEN

Thermoresponsive polymer brushes have attracted considerable research attention owing to their unique properties. Herein, we developed silica beads grafted with poly(N-isopropylacrylamide (NIPAAm)-co-3-acrylamidopropyl trimethylammonium chloride (APTAC)-co-tert-butyl acrylamide (tBAAm) and P(NIPAAm-co-APTAC-co-n-butyl methacrylate(nBMA)) brushes. The carbon, hydrogen, and nitrogen elemental analysis of the copolymer-grated silica beads revealed the presence of a large amount of the grafted copolymer on the silica beads. The electrostatic and hydrophobic interactions between biomolecules and prepared copolymer brushes were analyzed by observing their elution behaviors via high-performance liquid chromatography using the copolymer-brush-modified beads as the stationary phase. Adenosine nucleotides were retained in the bead-packed columns, which was attributed to the electrostatic interaction between the copolymers and adenosine nucleotides. Insulin was adsorbed on the copolymer brushes at high temperatures, which was attributed to its electrostatic and hydrophobic interactions with the copolymer. Similar adsorption behavior was observed in case of albumin. Further, at a low concentration of the phosphate buffer solution, albumin was adsorbed onto the copolymer brushes even at relatively low temperatures owing to its enhanced electrostatic interaction with the copolymer. These results indicated that the developed thermoresponsive strong cationic copolymer brushes can interact with peptides and proteins through a combination of electrostatic and temperature-modulated hydrophobic interactions. Thus, the developed copolymer brushes exhibits substantial potential for application in chromatographic matrices for the analysis and purification of peptides and proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA