Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 121(26): 266801, 2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30636137

RESUMEN

Two-dimensional materials have proven to be a prolific breeding ground of new and unstudied forms of magnetism and unusual metallic states, particularly when tuned between their insulating and metallic phases. Here we present work on a new metal-to-insulator transition system FePS_{3}. This compound is a two-dimensional van der Waals antiferromagnetic Mott insulator. We report the discovery of an insulator-metal transition in FePS_{3}, as evidenced by x-ray diffraction and electrical transport measurements, using high pressure as a tuning parameter. Two structural phase transitions are observed in the x-ray diffraction data as a function of pressure, and resistivity measurements show evidence of the onset of a metallic state at high pressures. We propose models for the two new structures that can successfully explain the x-ray diffraction patterns.

2.
J Phys Condens Matter ; 32(12): 124003, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-31770744

RESUMEN

We present an overview of our recent work in tuning and controlling the structural, magnetic and electronic dimensionality of 2D van-der-Waals antiferromagnetic compounds (Transition-Metal)PS3. Low-dimensional magnetic systems such as these provide rich opportunities for studying new physics and the evolution of established behaviours with changing dimensionality. These materials can be exfoliated to monolayer thickness and easily stacked and combined into functional heterostructures. Alternatively, the application of hydrostatic pressure can be used to controllably close the van-der-Waals interplanar gap and tune the crystal structure and electron exchange paths towards a 3D nature. We collect and discuss trends and contrasts in our data from electrical transport, Raman scattering and synchrotron x-ray measurements, as well as insight from theoretical calculations and other results from the literature. We discuss structural transitions with pressure common to all materials measured, and link these to Mott insulator-transitions in these compounds at high pressures. Key new results include magnetotransport and resistivity data in the high-pressure metallic states, which show potentially interesting qualities for a new direction of future work focussed on low temperature transport and quantum critical physics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA