Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neuron ; 112(11): 1730-1732, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38843779

RESUMEN

In a recent issue of Nature, Chen and colleagues1 reveal the potential for antisense oligonucleotides (ASOs) to rescue the neuropathological mechanisms underlying Timothy syndrome (TS) using three-dimensional neuronal models. Combining in vitro and in vivo approaches, the authors present a strategy to translate disease biology findings into potential therapeutics.


Asunto(s)
Trastorno Autístico , Síndrome de QT Prolongado , Neuronas , Sindactilia , Humanos , Trastorno Autístico/genética , Trastorno Autístico/patología , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/fisiopatología , Sindactilia/genética , Oligonucleótidos Antisentido/farmacología , Animales
2.
Nat Neurosci ; 24(6): 786-798, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33958804

RESUMEN

Selective neurodegeneration is a critical causal factor in Alzheimer's disease (AD); however, the mechanisms that lead some neurons to perish, whereas others remain resilient, are unknown. We sought potential drivers of this selective vulnerability using single-nucleus RNA sequencing and discovered that ApoE expression level is a substantial driver of neuronal variability. Strikingly, neuronal expression of ApoE-which has a robust genetic linkage to AD-correlated strongly, on a cell-by-cell basis, with immune response pathways in neurons in the brains of wild-type mice, human ApoE knock-in mice and humans with or without AD. Elimination or over-expression of neuronal ApoE revealed a causal relationship among ApoE expression, neuronal MHC-I expression, tau pathology and neurodegeneration. Functional reduction of MHC-I ameliorated tau pathology in ApoE4-expressing primary neurons and in mouse hippocampi expressing pathological tau. These findings suggest a mechanism linking neuronal ApoE expression to MHC-I expression and, subsequently, to tau pathology and selective neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Apolipoproteínas E/biosíntesis , Antígenos de Histocompatibilidad Clase I/biosíntesis , Neuronas/metabolismo , Regulación hacia Arriba/fisiología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Apolipoproteínas E/genética , Células Cultivadas , Bases de Datos Genéticas/tendencias , Femenino , Expresión Génica , Técnicas de Sustitución del Gen/métodos , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Masculino , Ratones , Ratones Transgénicos , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Neuronas/patología
3.
Cell Stem Cell ; 26(3): 297-299, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32142656

RESUMEN

Understanding why adult hippocampal neurogenesis (AHN) is impaired in Alzheimer's disease (AD) is essential for unravelling its role in pathogenesis. In this issue of Cell Stem Cell, Zheng et al. (2020) report that human tau accumulation in dentate gyrus GABAergic interneurons disrupts AHN and strengthening GABAergic signaling restores AHN and improves cognition in an AD mouse model.


Asunto(s)
Enfermedad de Alzheimer , Adulto , Animales , Cognición , Modelos Animales de Enfermedad , Hipocampo , Humanos , Interneuronas , Ratones , Neurogénesis
4.
Cell Rep ; 32(4): 107962, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32726626

RESUMEN

Despite its clear impact on Alzheimer's disease (AD) risk, apolipoprotein (apo) E4's contributions to AD etiology remain poorly understood. Progress in answering this and other questions in AD research has been limited by an inability to model human-specific phenotypes in an in vivo environment. Here we transplant human induced pluripotent stem cell (hiPSC)-derived neurons carrying normal apoE3 or pathogenic apoE4 into human apoE3 or apoE4 knockin mouse hippocampi, enabling us to disentangle the effects of apoE4 produced in human neurons and in the brain environment. Using single-nucleus RNA sequencing (snRNA-seq), we identify key transcriptional changes specific to human neuron subtypes in response to endogenous or exogenous apoE4. We also find that Aß from transplanted human neurons forms plaque-like aggregates, with differences in localization and interaction with microglia depending on the transplant and host apoE genotype. These findings highlight the power of in vivo chimeric disease modeling for studying AD.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Apolipoproteína E4/metabolismo , Neuronas/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E3/farmacología , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Quimera/genética , Quimera/metabolismo , Técnicas de Sustitución del Gen , Hipocampo/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/metabolismo , Modelos Biológicos , Proteínas tau/metabolismo
5.
Mol Neurodegener ; 14(1): 24, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31186040

RESUMEN

Apolipoprotein (apo) E4 is the major genetic risk factor for Alzheimer's disease (AD), increasing risk and decreasing age of disease onset. Many studies have demonstrated the detrimental effects of apoE4 in varying cellular contexts. However, the underlying mechanisms explaining how apoE4 leads to cognitive decline are not fully understood. Recently, the combination of human induced pluripotent stem cell (hiPSC) modeling of neurological diseases in vitro and electrophysiological studies in vivo have begun to unravel the intersection between apoE4, neuronal subtype dysfunction or loss, subsequent network deficits, and eventual cognitive decline. In this review, we provide an overview of the literature describing apoE4's detrimental effects in the central nervous system (CNS), specifically focusing on its contribution to neuronal subtype dysfunction or loss. We focus on γ-aminobutyric acid (GABA)-expressing interneurons in the hippocampus, which are selectively vulnerable to apoE4-mediated neurotoxicity. Additionally, we discuss the importance of the GABAergic inhibitory network to proper cognitive function and how dysfunction of this network manifests in AD. Finally, we examine how apoE4-mediated GABAergic interneuron loss can lead to inhibitory network deficits and how this deficit results in cognitive decline. We propose the following working model: Aging and/or stress induces neuronal expression of apoE. GABAergic interneurons are selectively vulnerable to intracellularly produced apoE4, through a tau dependent mechanism, which leads to their dysfunction and eventual death. In turn, GABAergic interneuron loss causes hyperexcitability and dysregulation of neural networks in the hippocampus and cortex. This dysfunction results in learning, memory, and other cognitive deficits that are the central features of AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Apolipoproteína E4/genética , Trastornos de la Memoria/genética , Red Nerviosa/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Memoria/fisiología , Trastornos de la Memoria/metabolismo
6.
Nat Med ; 24(5): 647-657, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29632371

RESUMEN

Efforts to develop drugs for Alzheimer's disease (AD) have shown promise in animal studies, only to fail in human trials, suggesting a pressing need to study AD in human model systems. Using human neurons derived from induced pluripotent stem cells that expressed apolipoprotein E4 (ApoE4), a variant of the APOE gene product and the major genetic risk factor for AD, we demonstrated that ApoE4-expressing neurons had higher levels of tau phosphorylation, unrelated to their increased production of amyloid-ß (Aß) peptides, and that they displayed GABAergic neuron degeneration. ApoE4 increased Aß production in human, but not in mouse, neurons. Converting ApoE4 to ApoE3 by gene editing rescued these phenotypes, indicating the specific effects of ApoE4. Neurons that lacked APOE behaved similarly to those expressing ApoE3, and the introduction of ApoE4 expression recapitulated the pathological phenotypes, suggesting a gain of toxic effects from ApoE4. Treatment of ApoE4-expressing neurons with a small-molecule structure corrector ameliorated the detrimental effects, thus showing that correcting the pathogenic conformation of ApoE4 is a viable therapeutic approach for ApoE4-related AD.


Asunto(s)
Apolipoproteína E4/toxicidad , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Neuronas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E3/metabolismo , Línea Celular , Células Cultivadas , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Edición Génica , Homocigoto , Humanos , Células Madre Pluripotentes Inducidas/citología , Degeneración Nerviosa/patología , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , Isoformas de Proteínas/metabolismo , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA