Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Genes Dev ; 32(11-12): 806-821, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29899141

RESUMEN

Post-replicative correction of replication errors by the mismatch repair (MMR) system is critical for suppression of mutations. Although the MMR system may need to handle nucleosomes at the site of chromatin replication, how MMR occurs in the chromatin environment remains unclear. Here, we show that nucleosomes are excluded from a >1-kb region surrounding a mismatched base pair in Xenopus egg extracts. The exclusion was dependent on the Msh2-Msh6 mismatch recognition complex but not the Mlh1-containing MutL homologs and counteracts both the HIRA- and CAF-1 (chromatin assembly factor 1)-mediated chromatin assembly pathways. We further found that the Smarcad1 chromatin remodeling ATPase is recruited to mismatch-carrying DNA in an Msh2-dependent but Mlh1-independent manner to assist nucleosome exclusion and that Smarcad1 facilitates the repair of mismatches when nucleosomes are preassembled on DNA. In budding yeast, deletion of FUN30, the homolog of Smarcad1, showed a synergistic increase of spontaneous mutations in combination with MSH6 or MSH3 deletion but no significant increase with MSH2 deletion. Genetic analyses also suggested that the function of Fun30 in MMR is to counteract CAF-1. Our study uncovers that the eukaryotic MMR system has an ability to exclude local nucleosomes and identifies Smarcad1/Fun30 as an accessory factor for the MMR reaction.


Asunto(s)
Disparidad de Par Base/fisiología , ADN Helicasas/metabolismo , Reparación de la Incompatibilidad de ADN/genética , Proteína 2 Homóloga a MutS/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Disparidad de Par Base/genética , Ensamble y Desensamble de Cromatina/genética , ADN/genética , ADN/metabolismo , ADN Helicasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Xenopus laevis
2.
Biosci Biotechnol Biochem ; 88(9): 1117-1125, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-38908912

RESUMEN

Colored rice is abundant in polyphenols, and koji molds have potential for biotransformation. This study aimed to produce Thai-colored rice koji to study its polyphenolic biotransformation. Four industrial koji mold strains: Aspergillus oryzae 6001, A. oryzae 6020, A. sojae 7009, and A. luchuensis 8035, were cultivated on unpolished Thai-colored rice (Riceberry and Sangyod), unpolished Thai white rice (RD43), and polished Japanese white rice (Koshihikari). We discovered that koji molds grew on all the rice varieties. Methanol extracts of all rice kojis exhibited an approximately 2-fold or greater increase in total phenolic content and DPPH antioxidant activity compared to those of steamed rice. Moreover, quercetin, quercetin-3-O-glucoside, isorhamnetin-3-O-glucoside, ferulic acid, caffeic acid, protocatechuic acid, vanillic acid, (+)-catechin, and (-)-epicatechin content increased in Riceberry and Sangyod koji samples. Consequently, Aspergillus solid-state cultivation on unpolished Thai-colored rice exhibited higher functionalization than the cultivation of unpolished Thai white rice and polished Japanese white rice.


Asunto(s)
Antioxidantes , Biotransformación , Oryza , Fenoles , Oryza/metabolismo , Oryza/microbiología , Antioxidantes/metabolismo , Fenoles/metabolismo , Tailandia , Aspergillus oryzae/metabolismo , Aspergillus/metabolismo , Aspergillus/crecimiento & desarrollo , Polifenoles/metabolismo , Pueblos del Sudeste Asiático
3.
PLoS Genet ; 17(7): e1009671, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34292936

RESUMEN

Gross chromosomal rearrangements (GCRs), including translocation, deletion, and inversion, can cause cell death and genetic diseases such as cancer in multicellular organisms. Rad51, a DNA strand exchange protein, suppresses GCRs by repairing spontaneous DNA damage through a conservative way of homologous recombination, gene conversion. On the other hand, Rad52 that catalyzes single-strand annealing (SSA) causes GCRs using homologous sequences. However, the detailed mechanism of Rad52-dependent GCRs remains unclear. Here, we provide genetic evidence that fission yeast Rad8/HLTF facilitates Rad52-dependent GCRs through the ubiquitination of lysine 107 (K107) of PCNA, a DNA sliding clamp. In rad51Δ cells, loss of Rad8 eliminated 75% of the isochromosomes resulting from centromere inverted repeat recombination, showing that Rad8 is essential for the formation of the majority of isochromosomes in rad51Δ cells. Rad8 HIRAN and RING finger mutations reduced GCRs, suggesting that Rad8 facilitates GCRs through 3' DNA-end binding and ubiquitin ligase activity. Mms2 and Ubc4 but not Ubc13 ubiquitin-conjugating enzymes were required for GCRs. Consistent with this, mutating PCNA K107 rather than the well-studied PCNA K164 reduced GCRs. Rad8-dependent PCNA K107 ubiquitination facilitates Rad52-dependent GCRs, as PCNA K107R, rad8, and rad52 mutations epistatically reduced GCRs. In contrast to GCRs, PCNA K107R did not significantly change gene conversion rates, suggesting a specific role of PCNA K107 ubiquitination in GCRs. PCNA K107R enhanced temperature-sensitive growth defects of DNA ligase I cdc17-K42 mutant, implying that PCNA K107 ubiquitination occurs when Okazaki fragment maturation fails. Remarkably, K107 is located at the interface between PCNA subunits, and an interface mutation D150E bypassed the requirement of PCNA K107 and Rad8 ubiquitin ligase for GCRs. These data suggest that Rad8-dependent PCNA K107 ubiquitination facilitates Rad52-dependent GCRs by changing the PCNA clamp structure.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Centrómero/metabolismo , ADN/metabolismo , Daño del ADN , ADN Ligasa (ATP)/genética , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/genética , Recombinación Homóloga , Mutación , Antígeno Nuclear de Célula en Proliferación/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
4.
EMBO J ; 37(15)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29997179

RESUMEN

DNA replication initiates at many discrete loci on eukaryotic chromosomes, and individual replication origins are regulated under a spatiotemporal program. However, the underlying mechanisms of this regulation remain largely unknown. In the fission yeast Schizosaccharomyces pombe, the telomere-binding protein Taz1, ortholog of human TRF1/TRF2, regulates a subset of late replication origins by binding to the telomere-like sequence near the origins. Here, we showed using a lacO/LacI-GFP system that Taz1-dependent late origins were predominantly localized at the nuclear periphery throughout interphase, and were localized adjacent to the telomeres in the G1/S phase. The peripheral localization that depended on the nuclear membrane protein Bqt4 was not necessary for telomeric association and replication-timing control of the replication origins. Interestingly, the shelterin components Rap1 and Poz1 were required for replication-timing control and telomeric association of Taz1-dependent late origins, and this requirement was bypassed by a minishelterin Tpz1-Taz1 fusion protein. Our results suggest that Taz1 suppresses replication initiation through shelterin-mediated telomeric association of the origins at the onset of S phase.


Asunto(s)
Origen de Réplica/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Replicación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Fase G1/genética , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Fase S/genética , Proteínas de Schizosaccharomyces pombe/genética , Complejo Shelterina , Proteínas de Unión a Telómeros/genética
5.
Genes Dev ; 26(18): 2050-62, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22987637

RESUMEN

In eukaryotes, the replication of chromosome DNA is coordinated by a replication timing program that temporally regulates the firing of individual replication origins. However, the molecular mechanism underlying the program remains elusive. Here, we report that the telomere-binding protein Taz1 plays a crucial role in the control of replication timing in fission yeast. A DNA element located proximal to a late origin in the chromosome arm represses initiation from the origin in early S phase. Systematic deletion and substitution experiments demonstrated that two tandem telomeric repeats are essential for this repression. The telomeric repeats recruit Taz1, a counterpart of human TRF1 and TRF2, to the locus. Genome-wide analysis revealed that Taz1 regulates about half of chromosomal late origins, including those in subtelomeres. The Taz1-mediated mechanism prevents Dbf4-dependent kinase (DDK)-dependent Sld3 loading onto the origins. Our results demonstrate that the replication timing program in fission yeast uses the internal telomeric repeats and binding of Taz1.


Asunto(s)
Replicación del ADN/fisiología , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiología , Proteínas de Unión a Telómeros/metabolismo , Secuencia de Bases , ADN de Hongos/genética , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Transporte de Proteínas , Origen de Réplica/fisiología , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Unión a Telómeros/genética
6.
Curr Genet ; 65(5): 1089-1098, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30997531

RESUMEN

The centromere region of chromosomes consists of repetitive DNA sequences, and is, therefore, one of the fragile sites of chromosomes in many eukaryotes. In the core region, the histone H3 variant CENP-A forms centromere-specific nucleosomes that are required for kinetochore formation. In the pericentromeric region, histone H3 is methylated at lysine 9 (H3K9) and heterochromatin is formed. The transcription of pericentromeric repeats by RNA polymerase II is strictly repressed by heterochromatin. However, the role of the transcriptional silencing of the pericentromeric repeats remains largely unclear. Here, we focus on the chromosomal rearrangements that occur at the repetitive centromeres, and highlight our recent studies showing that transcriptional silencing by heterochromatin suppresses gross chromosomal rearrangements (GCRs) at centromeres in fission yeast. Inactivation of the Clr4 methyltransferase, which is essential for the H3K9 methylation, increased GCRs with breakpoints located in centromeric repeats. However, mutations in RNA polymerase II or the transcription factor Tfs1/TFIIS, which promotes restart of RNA polymerase II following its backtracking, reduced the GCRs that occur in the absence of Clr4, demonstrating that heterochromatin suppresses GCRs by repressing the Tfs1-dependent transcription. We also discuss how the transcriptional restart gives rise to chromosomal rearrangements at centromeres.


Asunto(s)
Centrómero/genética , Cromosomas , Silenciador del Gen , Heterocromatina/genética , Secuencias Repetitivas de Ácidos Nucleicos , Transcripción Genética , Inestabilidad Cromosómica , Schizosaccharomyces/genética , Activación Transcripcional , Translocación Genética
7.
Nucleic Acids Res ; 45(19): 11222-11235, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28977643

RESUMEN

Centromeres that are essential for faithful segregation of chromosomes consist of unique DNA repeats in many eukaryotes. Although recombination is under-represented around centromeres during meiosis, little is known about recombination between centromere repeats in mitotic cells. Here, we compared spontaneous recombination that occurs between ade6B/ade6X inverted repeats integrated at centromere 1 (cen1) or at a non-centromeric ura4 locus in fission yeast. Remarkably, distinct mechanisms of homologous recombination (HR) were observed in centromere and non-centromere regions. Rad51-dependent HR that requires Rad51, Rad54 and Rad52 was predominant in the centromere, whereas Rad51-independent HR that requires Rad52 also occurred in the arm region. Crossovers between inverted repeats (i.e. inversions) were under-represented in the centromere as compared to the arm region. While heterochromatin was dispensable, Mhf1/CENP-S, Mhf2/CENP-X histone-fold proteins and Fml1/FANCM helicase were required to suppress crossovers. Furthermore, Mhf1 and Fml1 were found to prevent gross chromosomal rearrangements mediated by centromere repeats. These data for the first time uncovered the regulation of mitotic recombination between DNA repeats in centromeres and its physiological role in maintaining genome integrity.


Asunto(s)
Centrómero/genética , ADN de Hongos/genética , Recombinación Homóloga , Mitosis/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN de Hongos/metabolismo , Genoma Fúngico/genética , Modelos Genéticos , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
8.
Nucleic Acids Res ; 44(22): 10744-10757, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27697832

RESUMEN

Centromeres consist of DNA repeats in many eukaryotes. Non-allelic homologous recombination (HR) between them can result in gross chromosomal rearrangements (GCRs). In fission yeast, Rad51 suppresses isochromosome formation that occurs between inverted repeats in the centromere. However, how the HR enzyme prevents homology-mediated GCRs remains unclear. Here, we provide evidence that Rad51 with the aid of the Swi/Snf-type motor protein Rad54 promotes non-crossover recombination between centromere repeats to prevent isochromosome formation. Mutations in Rad51 and Rad54 epistatically increased the rates of isochromosome formation and chromosome loss. In sharp contrast, these mutations decreased gene conversion between inverted repeats in the centromere. Remarkably, analysis of recombinant DNAs revealed that rad51 and rad54 increase the proportion of crossovers. In the absence of Rad51, deletion of the structure-specific endonuclease Mus81 decreased both crossovers and isochromosomes, while the cdc27/pol32-D1 mutation, which impairs break-induced replication, did not. We propose that Rad51 and Rad54 promote non-crossover recombination between centromere repeats on the same chromatid, thereby suppressing crossover between non-allelic repeats on sister chromatids that leads to chromosomal rearrangements. Furthermore, we found that Rad51 and Rad54 are required for gene silencing in centromeres, suggesting that HR also plays a role in the structure and function of centromeres.


Asunto(s)
ADN Helicasas/fisiología , Recombinasa Rad51/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/genética , Centrómero , Cromátides , Cromosomas Fúngicos , Intercambio Genético , ADN de Hongos/genética , Reparación del ADN por Recombinación , Secuencias Repetitivas de Ácidos Nucleicos , Schizosaccharomyces/metabolismo
9.
EMBO J ; 31(9): 2182-94, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22433840

RESUMEN

The CMG complex composed of Mcm2-7, Cdc45 and GINS is postulated to be the eukaryotic replicative DNA helicase, whose activation requires sequential recruitment of replication proteins onto Mcm2-7. Current models suggest that Mcm10 is involved in assembly of the CMG complex, and in tethering of DNA polymerase α at replication forks. Here, we report that Mcm10 is required for origin DNA unwinding after association of the CMG components with replication origins in fission yeast. A combination of promoter shut-off and the auxin-inducible protein degradation (off-aid) system efficiently depleted cellular Mcm10 to <0.5% of the wild-type level. Depletion of Mcm10 did not affect origin loading of Mcm2-7, Cdc45 or GINS, but impaired recruitment of RPA and DNA polymerases. Mutations in a conserved zinc finger of Mcm10 abolished RPA loading after recruitment of Mcm10. These results show that Mcm10, together with the CMG components, plays a novel essential role in origin DNA unwinding through its zinc-finger function.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN de Hongos/metabolismo , Proteínas Fúngicas/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Levaduras
10.
Nucleic Acids Res ; 42(9): 5644-56, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24623809

RESUMEN

DNA double-strand breaks (DSBs) can cause chromosomal rearrangements and extensive loss of heterozygosity (LOH), hallmarks of cancer cells. Yet, how such events are normally suppressed is unclear. Here we identify roles for the DNA damage checkpoint pathway in facilitating homologous recombination (HR) repair and suppressing extensive LOH and chromosomal rearrangements in response to a DSB. Accordingly, deletion of Rad3(ATR), Rad26ATRIP, Crb2(53BP1) or Cdc25 overexpression leads to reduced HR and increased break-induced chromosome loss and rearrangements. We find the DNA damage checkpoint pathway facilitates HR, in part, by promoting break-induced Cdt2-dependent nucleotide synthesis. We also identify additional roles for Rad17, the 9-1-1 complex and Chk1 activation in facilitating break-induced extensive resection and chromosome loss, thereby suppressing extensive LOH. Loss of Rad17 or the 9-1-1 complex results in a striking increase in break-induced isochromosome formation and very low levels of chromosome loss, suggesting the 9-1-1 complex acts as a nuclease processivity factor to facilitate extensive resection. Further, our data suggest redundant roles for Rad3ATR and Exo1 in facilitating extensive resection. We propose that the DNA damage checkpoint pathway coordinates resection and nucleotide synthesis, thereby promoting efficient HR repair and genome stability.


Asunto(s)
Roturas del ADN de Doble Cadena , División del ADN , Inestabilidad Genómica , Reparación del ADN por Recombinación , Schizosaccharomyces/genética , Puntos de Control del Ciclo Celular , Quinasa de Punto de Control 2/metabolismo , Cromosomas Fúngicos/genética , Hibridación Genómica Comparativa , Exodesoxirribonucleasas/metabolismo , Genoma Fúngico , Pérdida de Heterocigocidad , Nucleótidos/biosíntesis , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
12.
J Biosci Bioeng ; 137(4): 231-238, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38346913

RESUMEN

Nitrogen source assimilation is important for the biological functions of fungi, and its pathway has been deeply studied. Aspergillus oryzae mutants defective in nitrogen source assimilation are known to grow poorly on Czapek-Dox (CD) medium. In this study, we found an industrial strain of A. oryzae that grew very poorly on a CD medium containing sodium nitrate as a nitrogen source. We used media with various nitrogen components to examine the steps affecting the nitrogen source assimilation pathway of this strain. The strain grew well on the CD medium supplied with nitrite salt or ammonium salt, suggesting that the strain was defective in nitrate assimilation step. To ascertain the gene causing the defect of nitrate assimilation, a gene expression vector harboring either niaD or crnA of A. oryzae RIB40 was introduced into the industrial strain. The industrial strain containing the crnA vector recovered its growth. This is the first report that a mutation of crnA causes poor growth on CD medium in an industrial strain of A. oryzae, and crnA can be used as a transformation marker for crnA deficient strains.


Asunto(s)
Aspergillus oryzae , Nitratos , Nitratos/metabolismo , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , ARN Complementario , Nitrógeno/metabolismo , Mutación
13.
Biomolecules ; 14(1)2023 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-38254628

RESUMEN

Centromeres play essential roles in the faithful segregation of chromosomes. CENP-A, the centromere-specific histone H3 variant, and heterochromatin characterized by di- or tri-methylation of histone H3 9th lysine (H3K9) are the hallmarks of centromere chromatin. Contrary to the epigenetic marks, DNA sequences underlying the centromere region of chromosomes are not well conserved through evolution. However, centromeres consist of repetitive sequences in many eukaryotes, including animals, plants, and a subset of fungi, including fission yeast. Advances in long-read sequencing techniques have uncovered the complete sequence of human centromeres containing more than thousands of alpha satellite repeats and other types of repetitive sequences. Not only tandem but also inverted repeats are present at a centromere. DNA recombination between centromere repeats can result in gross chromosomal rearrangement (GCR), such as translocation and isochromosome formation. CENP-A chromatin and heterochromatin suppress the centromeric GCR. The key player of homologous recombination, Rad51, safeguards centromere integrity through conservative noncrossover recombination between centromere repeats. In contrast to Rad51-dependent recombination, Rad52-mediated single-strand annealing (SSA) and microhomology-mediated end-joining (MMEJ) lead to centromeric GCR. This review summarizes recent findings on the role of centromere and recombination proteins in maintaining centromere integrity and discusses how GCR occurs at centromeres.


Asunto(s)
Heterocromatina , Histonas , Animales , Humanos , Histonas/genética , Proteína A Centromérica , Centrómero/genética , Aberraciones Cromosómicas , Cromatina
14.
J Biosci Bioeng ; 135(6): 447-450, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36990903

RESUMEN

While chicken eggs contain many nutrients necessary for humans and there are various cooking methods, the nutritional components are used as they are, and there are no traditional foods that utilize microorganisms. Koji-mold, containing Aspergillus oryzae, A. sojae, and A. luchuensis, which has been used in various fermented foods since ancient times, grows on raw grain materials such as rice and barley to become koji. This can give flavors not found in the raw materials that can decompose and convert the nutritional components of the raw materials. Here, we succeeded for the first time in developing egg-koji that uses only eggs and koji-mold by selecting and combining cooked egg powder (CEP) and A. oryzae AO101 as the most suitable combination. To suppress the explosive growth of harmful bacteria, we improved the sterilization method, watering method, and amount of water. In addition, it was found that egg-koji has a characteristic enzyme activity balance, in which amylase is extremely low and protease at pH 6 was high compared to grain koji, such as rice and barley. Egg-koji might produce enzymes suitable for taking in nutrients when growing into CEP and would be expected to give a flavor that could not be achieved by cooking or additives.


Asunto(s)
Aspergillus oryzae , Alimentos Fermentados , Oryza , Humanos , Fermentación , Amilasas , Huevos , Oryza/química
15.
Commun Biol ; 6(1): 551, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37237082

RESUMEN

Rad51 maintains genome integrity, whereas Rad52 causes non-canonical homologous recombination leading to gross chromosomal rearrangements (GCRs). Here we find that fission yeast Srr1/Ber1 and Skb1/PRMT5 promote GCRs at centromeres. Genetic and physical analyses show that srr1 and skb1 mutations reduce isochromosome formation mediated by centromere inverted repeats. srr1 increases DNA damage sensitivity in rad51 cells but does not abolish checkpoint response, suggesting that Srr1 promotes Rad51-independent DNA repair. srr1 and rad52 additively, while skb1 and rad52 epistatically reduce GCRs. Unlike srr1 or rad52, skb1 does not increase damage sensitivity. Skb1 regulates cell morphology and cell cycle with Slf1 and Pom1, respectively, but neither Slf1 nor Pom1 causes GCRs. Mutating conserved residues in the arginine methyltransferase domain of Skb1 greatly reduces GCRs. These results suggest that, through arginine methylation, Skb1 forms aberrant DNA structures leading to Rad52-dependent GCRs. This study has uncovered roles for Srr1 and Skb1 in GCRs at centromeres.


Asunto(s)
Isocromosomas , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Humanos , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Centrómero/genética , Centrómero/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Recombinación Homóloga , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Quinasas/genética , Metiltransferasas/genética , Proteínas de Unión al ARN/metabolismo
16.
J Biol Chem ; 286(48): 41701-41710, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-21971174

RESUMEN

Mcm2-7 complexes are loaded onto chromatin with the aid of Cdt1 and Cdc18/Cdc6 and form prereplicative complexes (pre-RCs) at multiple sites on each chromosome. Pre-RCs are essential for DNA replication and surviving replication stress. However, the mechanism by which pre-RCs contribute to surviving replication stress is largely unknown. Here, we isolated the fission yeast mcm6-S1 mutant that was hypersensitive to methyl methanesulfonate (MMS) and camptothecin (CPT), both of which cause forks to collapse. The mcm6-S1 mutation impaired the interaction with Cdt1 and decreased the binding of minichromosome maintenance (MCM) proteins to replication origins. Overexpression of Cdt1 restored MCM binding and suppressed the sensitivity to MMS and CPT, suggesting that the Cdt1-Mcm6 interaction is important for the assembly of pre-RCs and the repair of collapsed forks. MMS-induced Chk1 phosphorylation and Rad22/Rad52 focus formation occurred normally, whereas cells containing Rhp54/Rad54 foci, which are involved in DNA strand exchange and dissociation of the joint molecules, were increased. Remarkably, G(1) phase extension through deletion of an S phase cyclin, Cig2, as well as Cdt1 overexpression restored pre-RC assembly and suppressed Rhp54 accumulation. A cdc18 mutation also caused hypersensitivity to MMS and CPT and accumulation of Rhp54 foci. These data suggest that an abundance of pre-RCs facilitates a late step in the recombinational repair of collapsed forks in the following S phase.


Asunto(s)
ADN de Hongos/biosíntesis , Fase G1/fisiología , Complejos Multiproteicos/metabolismo , Fase S/fisiología , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , ADN de Hongos/genética , Regulación Fúngica de la Expresión Génica/fisiología , Complejos Multiproteicos/genética , Mutación , Fosforilación , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
17.
EMBO J ; 27(22): 3036-46, 2008 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-18923422

RESUMEN

Centromere that plays a pivotal role in chromosome segregation is composed of repetitive elements in many eukaryotes. Although chromosomal regions containing repeats are the hotspots of rearrangements, little is known about the stability of centromere repeats. Here, by using a minichromosome that has a complete set of centromere sequences, we have developed a fission yeast system to detect gross chromosomal rearrangements (GCRs) that occur spontaneously. Southern and comprehensive genome hybridization analyses of rearranged chromosomes show two types of GCRs: translocation between homologous chromosomes and formation of isochromosomes in which a chromosome arm is replaced by a copy of the other. Remarkably, all the examined isochromosomes contain the breakpoint in centromere repeats, showing that isochromosomes are produced by centromere rearrangement. Mutations in the Rad3 checkpoint kinase increase both types of GCRs. In contrast, the deletion of Rad51 recombinase preferentially elevates isochromosome formation. Chromatin immunoprecipitation analysis shows that Rad51 localizes at centromere around S phase. These data suggest that Rad51 suppresses rearrangements of centromere repeats that result in isochromosome formation.


Asunto(s)
Centrómero/metabolismo , Aberraciones Cromosómicas , Cromosomas Fúngicos/metabolismo , Recombinasa Rad51/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrómero/genética , Quinasa de Punto de Control 2 , Segregación Cromosómica , ADN de Hongos/genética , ADN de Hongos/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Recombinasa Rad51/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
18.
BMC Cell Biol ; 12: 8, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21314938

RESUMEN

BACKGROUND: Inducible inactivation of a protein is a powerful approach for analysis of its function within cells. Fission yeast is a useful model for studying the fundamental mechanisms such as chromosome maintenance and cell cycle. However, previously published strategies for protein-depletion are successful only for some proteins in some specific conditions and still do not achieve efficient depletion to cause acute phenotypes such as immediate cell cycle arrest. The aim of this work was to construct a useful and powerful protein-depletion system in Shizosaccaromyces pombe. RESULTS: We constructed an auxin-inducible degron (AID) system, which utilizes auxin-dependent poly-ubiquitination of Aux/IAA proteins by SCFTIR1 in plants, in fission yeast. Although expression of a plant F-box protein, TIR1, decreased Mcm4-aid, a component of the MCM complex essential for DNA replication tagged with Aux/IAA peptide, depletion did not result in an evident growth defect. We successfully improved degradation efficiency of Mcm4-aid by fusion of TIR1 with fission yeast Skp1, a conserved F-box-interacting component of SCF (improved-AID system; i-AID), and the cells showed severe defect in growth. The i-AID system induced degradation of Mcm4-aid in the chromatin-bound MCM complex as well as those in soluble fractions. The i-AID system in conjunction with transcription repression (off-AID system), we achieved more efficient depletion of other proteins including Pol1 and Cdc45, causing early S phase arrest. CONCLUSION: Improvement of the AID system allowed us to construct conditional null mutants of S. pombe. We propose that the off-AID system is the powerful method for in vivo protein-depletion in fission yeast.


Asunto(s)
Ciclo Celular/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Proteínas Recombinantes de Fusión/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Replicación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Expresión Génica/genética , Ácidos Indolacéticos/farmacología , Componente 4 del Complejo de Mantenimiento de Minicromosoma , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Poliubiquitina/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Schizosaccharomyces/citología , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Activación Transcripcional , Transformación Genética
19.
Proc Natl Acad Sci U S A ; 105(35): 12973-8, 2008 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-18753627

RESUMEN

The minichromosome maintenance (MCM) helicase, composed of subunits Mcm2-7, is essential for the initiation and elongation phases of DNA replication. Even when DNA synthesis is blocked, MCM continues DNA unwinding to some extent for activation of the replication checkpoint and then stops. However, the mechanism of regulation of MCM-helicase activity remains unknown. Here, we show that truncation of the Mcm4 C-terminal domain (CTD) in fission yeast results in hypersensitivity to replication block caused by dNTP depletion. The truncation mcm4-c84 does not affect the activation of the replication checkpoint pathway but delays its attenuation during recovery from replication block. Two dimensional gel electrophoresis showed that mcm4-c84 delays the disappearance of replication intermediates, indicating that the Mcm4 CTD is required for efficient recovery of stalled replication forks. Remarkably, chromatin immunoprecipitation revealed that mcm4-c84 brings about an increase rather than a decrease in the association of the single-stranded DNA-binding protein RPA to stalled forks, and MCM and the accessory complex GINS are unaffected. These results suggest that the Mcm4 CTD is required to suspend MCM-helicase activity after the formation of single-stranded DNA sufficient for checkpoint activation.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , ADN Helicasas/metabolismo , Replicación del ADN , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Ciclo Celular , Componente 4 del Complejo de Mantenimiento de Minicromosoma , Mutación/genética , Nucleótidos/deficiencia , Estructura Terciaria de Proteína , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Relación Estructura-Actividad
20.
Commun Biol ; 3(1): 202, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32355220

RESUMEN

Homologous recombination between repetitive sequences can lead to gross chromosomal rearrangements (GCRs). At fission yeast centromeres, Rad51-dependent conservative recombination predominantly occurs between inverted repeats, thereby suppressing formation of isochromosomes whose arms are mirror images. However, it is unclear how GCRs occur in the absence of Rad51 and how GCRs are prevented at centromeres. Here, we show that homology-mediated GCRs occur through Rad52-dependent single-strand annealing (SSA). The rad52-R45K mutation, which impairs SSA activity of Rad52 protein, dramatically reduces isochromosome formation in rad51 deletion cells. A ring-like complex Msh2-Msh3 and a structure-specific endonuclease Mus81 function in the Rad52-dependent GCR pathway. Remarkably, mutations in replication fork components, including DNA polymerase α and Swi1/Tof1/Timeless, change the balance between Rad51-dependent recombination and Rad52-dependent SSA at centromeres, increasing Rad52-dependent SSA that forms isochromosomes. Our results uncover a role of DNA replication machinery in the recombination pathway choice that prevents Rad52-dependent GCRs at centromeres.


Asunto(s)
Centrómero/genética , Replicación del ADN , Reordenamiento Génico , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA