Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 732: 150401, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39033554

RESUMEN

The pathophysiology of laryngopharyngeal reflux (LPR) and its impact on the vocal fold is not well understood, but may involve acid damage to vocal fold barrier functions. Two different components encompass vocal fold barrier function: the mucus barrier and tight junctions. Mucus retained on epithelial microprojections protects the inside of the vocal fold by neutralizing acidic damage. Tight junctions control permeability between cells. Here we developed an in vitro experimental system to evaluate acidic injury and repair of vocal fold barrier functions. We first established an in vitro model of rat vocal fold epithelium that could survive at least one week after barrier function maturation. The model enabled repeated evaluation of the course of vocal fold repair processes. Then, an injury experiment was conducted in which vocal fold cells were exposed to a 5-min treatment with acidic pepsin that injured tight junctions and cell surface microprojections. Both of them healed within one day of injury. Comparing vocal fold cells treated with acid alone with cells treated with acidic pepsin showed that acidic pepsin had a stronger effect on intercellular permeability than acid alone, whereas pepsin had little effect on microprojections. This result suggests that the proteolytic action of pepsin has a larger effect on protein-based tight junctions than on phospholipids in microprojections. This experimental system could contribute to a better understanding of vocal fold repair processes after chemical or physical injuries, as well as voice problems due to LPR pathogenesis.

2.
Biol Pharm Bull ; 47(1): 88-97, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38171782

RESUMEN

Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS/TEN) are potentially life-threatening severe cutaneous adverse drug reactions. These diseases are rare, and their onset is difficult to predict because of their idiosyncratic reactivity. The Japan Severe Adverse Reactions Research Group, led by the National Institute of Health Sciences, has operated a nationwide to collect clinical information and genomic samples from patients with SJS/TEN since 2006. This study evaluated the associations of clinical symptoms with sequelae and specific causative drugs/drug groups in Japanese patients with SJS/TEN to identify clinical clues for SJS/TEN treatment and prognosis. Acetaminophen, antibiotics, and carbocisteine were linked to high frequencies of severe ocular symptoms and ocular sequelae (p < 0.05). For erythema and erosion areas, antipyretic analgesics had higher rates of skin symptom affecting <10% of the skin than the other drugs, suggesting narrower lesions (p < 0.004). Hepatic dysfunction, was common in both SJS and TEN, and antiepileptic drugs carried higher risks of hepatic dysfunction than the other drug groups (p = 0.0032). This study revealed that the clinical manifestations of SJS/TEN vary according to the causative drugs.


Asunto(s)
Síndrome de Stevens-Johnson , Humanos , Síndrome de Stevens-Johnson/etiología , Síndrome de Stevens-Johnson/complicaciones , Japón/epidemiología , Piel/patología , Acetaminofén/efectos adversos , Ojo
3.
Cell Tissue Res ; 394(1): 163-175, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37460682

RESUMEN

The maintenance of planar polarity in airway multiciliated cells (MCCs) has been poorly characterized. We recently reported that the direction of ciliary beating in a surgically inverted tracheal segment remained inverted beyond the time required for the turnover of cells, without adjustment to global distal-to-proximal polarity. We hypothesized that the local maintenance of tissue-level polarity occurs via locally reproduced cells. To provide further insight regarding this hypothetical property, we performed allotransplantation of an inverted tracheal segment between wild-type (donor) and tdTomato-expressing (host) rats, with and without scratching the mucosa of the transplants. The origin of cells in the transplants was assessed using tdTomato-specific immunostaining. Ciliary movement and structures were observed by high-speed video and electron microscopy to analyze MCC orientations. Variabilities in the orientations of closely and distantly located MCCs were analyzed to evaluate the local- and broad-scale coordination of polarity, respectively. The epithelium was maintained by donor-derived cells in the non-scratched inverted transplant over 6 months, beyond one cycle of turnover. The inverted orientation of MCCs was also maintained throughout the non-scratched transplant. MCCs regenerated in the scratched transplant were derived from the host and exhibited diverse orientations across the transplant. However, the orientations of adjacent regenerated MCCs were often coordinated, indicating that airway MCCs can locally coordinate their orientations. A steady-state airway may maintain MCC orientation by locally reproducing MCCs via the local coordination of polarity. This local coordination enables the formation and maintenance of tissue-level polarity in small regions after mucosal injury.

4.
Hepatol Res ; 53(5): 440-449, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36583370

RESUMEN

AIM: Drug-induced liver injury (DILI) is a severe and life-threatening immune-mediated adverse effect, occurring rarely among treated patients. We examined genomic biomarkers in the Japanese population that predict the onset of DILI after using a certain class of drugs, such as Kampo products (Japanese traditional medicines). METHODS: A total of 287 patients diagnosed as DILI by hepatology specialists were recruited after written informed consent was obtained. A genome-wide association analysis and human leukocyte antigen (HLA) typing in four digits were performed. RESULTS: We found a significant association (p = 9.41 × 10-10 ) of rs146644517 (G > A) with Kampo product-related DILI. As this polymorphism is located in the HLA region, we evaluated the association of HLA types and found that 12 (63.2%) of 19 Kampo-DILI patients contained HLA-B*35:01, whereas only 15.2% were positive for this HLA among healthy volunteers. The odds ratio was 9.56 (95% confidence interval 3.75-24.46; p = 2.98 × 10-6 , corrected p = 4.17 × 10-5 ), and it increased to 13.55 compared with the DILI patients not exposed to Kampo products. The individual crude drug components in the Kampo products, including Scutellaria root (ougon in Japanese), rhubarb (daiou), Gardenia fruit (sanshishi), and Glycyrrhiza (kanzou), were significantly associated with HLA-B*35:01. CONCLUSIONS: HLA-B*35:01 is a genetic risk factor and a potential predictive biomarker for Kampo-induced DILI in the Japanese population.

5.
Exp Cell Res ; 419(1): 113301, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35931141

RESUMEN

Macrophage phenotypes are simplistically classified as pro-inflammatory (M1) or anti-inflammatory/pro-fibrotic (M2). Phenotypically different macrophages are putatively involved in vocal fold (VF) fibrosis. The current study investigated interactions between macrophages and VF fibroblasts. THP-1 monocyte-derived macrophages were treated with interferon-gamma (IFN-γ), lipopolysaccharide (LPS)/IFN-γ, interleukin-10 (IL10), transforming growth factor-ß1 (TGF-ß), or interleukin-4 (IL4) for 24 h (M(IFN), M(IFN/LPS), M(IL10), M(TGF), and M(IL4), respectively; M(-) denotes untreated macrophages). Differentially activated macrophages and human VF fibroblasts were co-cultured ± direct contact. Expression of CXCL10, CCN2, ACTA2, FN1, TGM2, and LOX was quantified by real-time polymerase chain reaction. Type I collagen and smooth muscle actin (SMA) were observed by immunofluorescence. CXCL10 and PTGS2 were upregulated in fibroblasts indirectly co-cultured with M(IFN) and M(IFN/LPS). M(TGF) stimulated CCN2, ACTA2, and FN1 in fibroblasts. Enzymes involved in extracellular matrix crosslinking (TGM2, LOX) were increased in monocultured M(IL4) compared to M(-). Direct co-culture with all macrophages increased type I collagen and SMA in fibroblasts. Macrophage phenotypic shift was consistent with stimulation and had downstream differential effects on VF fibroblasts. Direct contact with macrophages, regardless of phenotype, stimulated a pro-fibrotic response in VF fibroblasts. Collectively, these data suggest meaningful interactions between macrophages and fibroblasts mediate fibrosis.


Asunto(s)
Interleucina-10 , Interleucina-4 , Colágeno Tipo I , Fibroblastos , Fibrosis , Expresión Génica , Humanos , Interferón gamma , Lipopolisacáridos , Macrófagos , Factor de Crecimiento Transformador beta1 , Pliegues Vocales
6.
Biol Pharm Bull ; 46(9): 1203-1210, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37661399

RESUMEN

Methylmercury (MeHg) is a toxic metal that causes irreversible damage to the nervous system, making it a risk factor for neuronal degeneration and diseases. MeHg activates various cell signaling pathways, particularly the mitogen-activated protein kinase (MAPK) cascades, which are believed to be important determinants of stress-induced cell fate. However, little is known about the signaling pathways that mitigate the neurotoxic effects of MeHg. Herein, we showed that pretreatment with a p38 MAPK-specific inhibitor, SB203580, attenuates MeHg toxicity in human neuroblastoma SH-SY5Y cells, whereas pretreatment with the extracellular signaling-regulated kinase inhibitor U0126 and the c-Jun N-terminal kinase inhibitor SP600125 does not. Specifically, we quantified the levels of intracellular mercury (Hg) and found that pretreatment with SB203580 reduced Hg levels compared to MeHg treatment alone. Further analysis showed that pretreatment with SB203580 increased multidrug resistance-associated protein 2 (MRP2) mRNA levels after MeHg treatment. These results indicate that detoxification of MeHg by p38 MAPK inhibitors may involve an efflux function of MeHg by inducing MRP2 expression.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Neuroblastoma , Humanos , Compuestos de Metilmercurio/toxicidad , Proteínas Quinasas p38 Activadas por Mitógenos , Transporte Biológico
7.
Angew Chem Int Ed Engl ; 62(11): e202217048, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36628483

RESUMEN

Switching between the formation/dissociation of rotaxanes is important to control the function of various types of rotaxane-based materials. We have developed a convenient and simple strategy, the so-called "accelerator addition", to make a static rotaxane dynamic without apparently affecting the chemical structure. As an interlocked molecule that enables tuning of the formation/dissociation speed, a metallorotaxane was quantitatively generated by the complexation of a triptycene-based dumbbell-shaped mononuclear complex, [PdL2 ]2+ (L=2,3-diaminotriptycene), with 27C9. As a result of the inertness of the Pd2+ -based coordination structure, the metallorotaxane was slowly formed (the static state). This rotaxane formation was accelerated 27 times simply by adding Br- as an accelerator (the dynamic state). A similar drastic acceleration was also demonstrated during the dissociation process when Cs+ was added to the metallorotaxane to form the free axle [PdL2 ]2+ and the 27C9-Cs+ complex.

8.
Plant Mol Biol ; 109(4-5): 563-577, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34837578

RESUMEN

KEY MESSAGE: An organomercurial phenylmercury activates AtPCS1, an enzyme known for detoxification of inorganic metal(loid) ions in Arabidopsis and the induced metal-chelating peptides phytochelatins are essential for detoxification of phenylmercury. Small thiol-rich peptides phytochelatins (PCs) and their synthases (PCSs) are crucial for plants to mitigate the stress derived from various metal(loid) ions in their inorganic form including inorganic mercury [Hg(II)]. However, the possible roles of the PC/PCS system in organic mercury detoxification in plants remain elusive. We found that an organomercury phenylmercury (PheHg) induced PC synthesis in Arabidopsis thaliana plants as Hg(II), whereas methylmercury did not. The analyses of AtPCS1 mutant plants and in vitro assays using the AtPCS1-recombinant protein demonstrated that AtPCS1, the major PCS in A. thaliana, was responsible for the PheHg-responsive PC synthesis. AtPCS1 mutants cad1-3 and cad1-6, and the double mutant of PC-metal(loid) complex transporters AtABCC1 and AtABCC2 showed enhanced sensitivity to PheHg as well as to Hg(II). The hypersensitivity of cad1-3 to PheHg stress was complemented by the own-promoter-driven expression of AtPCS1-GFP. The confocal microscopy of the complementation lines showed that the AtPCS1-GFP was preferentially expressed in epidermal cells of the mature and elongation zones, and the outer-most layer of the lateral root cap cells in the meristematic zone. Moreover, in vitro PC-metal binding assay demonstrated that binding affinity between PC and PheHg was comparable to Hg(II). However, plant ionomic profiles, as well as root morphology under PheHg and Hg(II) stress, were divergent. These results suggest that PheHg phytotoxicity is different from Hg(II), but AtPCS1-mediated PC synthesis, complex formation, and vacuolar sequestration by AtABCC1 and AtABCC2 are similarly functional for both PheHg and Hg(II) detoxification in root surficial cell types.


Asunto(s)
Aminoaciltransferasas , Proteínas de Arabidopsis , Arabidopsis , Mercurio , Aminoaciltransferasas/genética , Aminoaciltransferasas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cadmio/metabolismo , Glutatión/metabolismo , Iones/metabolismo , Mercurio/metabolismo , Mercurio/toxicidad , Fitoquelatinas/metabolismo
9.
Mol Microbiol ; 115(4): 807-818, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33202070

RESUMEN

IscU is a central component of the ISC machinery and serves as a scaffold for de novo assembly of Fe-S clusters. The dedicated chaperone system composed of the Hsp70-chaperone HscA and the J-protein cochaperone HscB synergistically interacts with IscU and facilitates cluster transfer from IscU to recipient apo-proteins. Here, we report that the otherwise essential roles of HscA and HscB can be bypassed in vivo by a number of single amino acid substitutions in IscU. CD spectroscopic studies of the variant IscU proteins capable of this bypass activity revealed dynamic interconversion between two conformations: the denatured (D) and the structured (S) state in the absence and presence of Zn2+ , respectively, which was far more prominent than interconversion observed in wild-type IscU. Furthermore, we found that neither the S-shifted (more structured) variants of IscU nor the perpetually denatured variants could perform their in vivo role regardless of whether the chaperone system was present or not. The present study thus provides for the first time evidence that an in vivo D-state of IscU exists and implies that conformational interconversion between the S- and D-states of the scaffolding protein is a fundamental requirement for the assembly and transfer of the Fe-S cluster.


Asunto(s)
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Hierro-Azufre/metabolismo , Sustitución de Aminoácidos , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas HSP70 de Choque Térmico/genética , Proteínas de Choque Térmico/genética , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Modelos Moleculares , Mutación , Fenotipo , Conformación Proteica , Desnaturalización Proteica , Dominios y Motivos de Interacción de Proteínas , Zinc/química , Zinc/metabolismo
10.
Biochem Biophys Res Commun ; 609: 134-140, 2022 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-35452957

RESUMEN

SQSTM1/p62, hereinafter referred to as p62, is a stress-induced cellular protein that interacts with various signaling proteins as well as ubiquitinated proteins to regulate a variety of cellular functions and cell survival. Methylmercury (MeHg) exposure increases the levels of p62, the latter playing a protective role in MeHg-induced toxicity. However, the underlying mechanism by which p62 alleviates MeHg toxicity remains poorly understood. Herein, we report the interaction of p62 with neural precursor cell expressed developmentally down-regulated protein 4 (NEDD4), a HECT E3 ubiquitin ligase. The region of p62 where NEDD4 binds is located at the proline- and arginine (PR)-rich region (amino acids: 102-119), C-terminal extension of the Phox and Bem1 (PB1) domain. To evaluate the importance of the p62-NEDD4 complex, we examined the compensation of deletion mutant (GFP-Δ102-119 p62) for the lack of endogenous p62 in MEFs. GFP-p62/p62KO cells exhibited significantly higher cell viability than GFP-Δ102-119 p62/p62KO cells after treatment with MeHg. Our findings suggest novel mechanisms to alleviate MeHg toxicity through p62-NEDD4 complex formation.


Asunto(s)
Compuestos de Metilmercurio , Autofagia , Supervivencia Celular , Compuestos de Metilmercurio/toxicidad , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Ubiquitinadas/metabolismo
11.
Exp Cell Res ; 405(2): 112681, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34087241

RESUMEN

Fibrosis of the vocal folds poses a substantive clinical challenge potentially underlying the rapid proliferation of direct steroid injections into the upper airway. The variable clinical response to glucocorticoids (GCs) in the vocal folds is likely related to diversity inherent to GCs and patient-specific, and upstream, cell-specific responses to GCs. Broadly, we hypothesize the disparity in clinical outcomes are due to undesirable effects of GCs on resident fibroblasts. Transcriptome analysis identified significant GC-mediated modulation of Hippo signaling, a known regulator of fibrotic gene expression. Subsequent analysis confirmed GC-mediated YAP activation, a transcriptional co-factor in the Hippo signaling pathway. YAP inhibition attenuated ACTA2 expression in GC-treated human vocal fold fibroblasts. Nuclear localization and phosphorylation at Ser211, however, was not affected by YAP inhibition, suggesting nuclear translocation of YAP is indirectly driven by GR. RNA-seq analysis confirmed the influence of GCs on Wnt signaling, and canonical Wnt signaling target genes were upregulated by GCs. These data implicate YAP and its downstream targets as putative mediators of a pro-fibrotic response to GCs. Therapeutic YAP inhibition may ultimately be clinically relevant and warrants further consideration.


Asunto(s)
Fibroblastos/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Glucocorticoides/farmacología , Transporte de Proteínas/efectos de los fármacos , Humanos , Fosforilación/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos
12.
Biochemistry ; 60(20): 1569-1572, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-33938220

RESUMEN

IscU serves as a scaffold for the de novo assembly of a [2Fe-2S] cluster prior to its delivery to recipient protein. It has also been proposed that on one dimer of bacterial IscU, two [2Fe-2S] clusters can be converted into a single [4Fe-4S] cluster. However, lack of structural information about the dimeric state of IscU has hindered our understanding of the underlying mechanisms. In this study, we determine the X-ray crystal structure of IscU from the thermophilic archaeon Methanothrix thermoacetophila and demonstrate a dimer structure of IscU in which two [2Fe-2S] clusters are facing each other in close proximity at the dimer interface. Our structure also reveals for the first time that Asp40 serves as a fourth ligand to the [2Fe-2S] cluster with three Cys ligands in each monomer, consistent with previous spectroscopic data. We confirm by EPR spectroscopic analysis that in solution two adjacent [2Fe-2S] clusters in the wild-type dimer are converted to a [4Fe-4S] cluster via reductive coupling. Furthermore, we find that the H106A substitution abolishes the reductive conversion to the [4Fe-4S] cluster without structural alteration, suggesting that His106 is functionally involved in this process. Overall, these findings provide a structural explanation for the assembly and conversion of Fe-S clusters on IscU and highlight a dynamic process that advances via association and dissociation of the IscU dimer.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas Hierro-Azufre/metabolismo , Methanosarcinaceae/metabolismo , Espectroscopía de Resonancia por Spin del Electrón/métodos , Proteínas de Escherichia coli/fisiología , Hierro/metabolismo , Proteínas Hierro-Azufre/fisiología , Relación Estructura-Actividad , Azufre/metabolismo
13.
J Allergy Clin Immunol ; 145(3): 958-967.e5, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31775017

RESUMEN

BACKGROUND: CD23 mediates IgE-facilitated allergen presentation and subsequent allergen-specific T-cell activation in allergic patients. OBJECTIVE: We sought to investigate key factors regulating IgE-facilitated allergen presentation through CD23 and subsequent T-cell activation. METHODS: To study T-cell activation by free allergens and different types of IgE-Bet v 1 complexes, we used a molecular model based on monoclonal human Bet v 1-specific IgE, monomeric and oligomeric Bet v 1 allergen, an MHC-matched CD23-expressing B-cell line, and a T-cell line expressing a human Bet v 1-specific T-cell receptor. The ability to cross-link Fcε receptors of complexes consisting of either IgE and monomeric Bet v 1 or IgE and oligomeric Bet v 1 was studied in human FcεRI-expressing basophils. T-cell proliferation by monomeric or oligomeric Bet v 1, which cross-links Fcε receptors to a different extent, was studied in allergic patients' PBMCs with and without CD23-expressing B cells. RESULTS: In our model non-cross-linking IgE-Bet v 1 monomer complexes, as well as cross-linking IgE-Bet v 1 oligomer complexes, induced T-cell activation, which was dependent on the concentration of specific IgE. However, T-cell activation by cross-linking IgE-Bet v 1 oligomer complexes was approximately 125-fold more efficient. Relevant T-cell proliferation occurred in allergic patients' PBMCs only in the presence of B cells, and its magnitude depended on the ability of IgE-Bet v 1 complexes to cross-link CD23. CONCLUSION: The extent of CD23-mediated T-cell activation depends on the concentration of allergen-specific IgE and the cross-linking ability of IgE-allergen complexes.


Asunto(s)
Presentación de Antígeno/inmunología , Antígenos de Plantas/inmunología , Inmunoglobulina E/inmunología , Activación de Linfocitos/inmunología , Receptores de IgE/inmunología , Linfocitos T/inmunología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Rinitis Alérgica Estacional/inmunología
14.
Biochem Biophys Res Commun ; 526(1): 206-212, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32201079

RESUMEN

Gadolinium-based contrast agents (GBCAs) are widely used in clinical magnetic resonance imaging (MRI). Free gadolinium ions (Gd3+) released from GBCAs potentially increase the risk of GBCA-related toxicity. However, the cellular responses to Gd3+ and the underlying mechanisms responsible for protection against Gd3+ remain poorly understood. Recently, autophagy has been considered a cell survival mechanism against various toxic metals. Here, we investigated the relationship between Gd3+ and autophagy, as well as the effect of autophagy inhibition on the survival of cells exposed to Gd3+. We found that the increased expression of microtubule-associated protein 1 light chain 3 (LC3)-II, a marker protein of autophagy, in Gd3+-exposed human embryonic kidney 293 (HEK293) cells. Moreover, we found a greater accumulation of LC3-II after exposure to an autophagy inhibitor, chloroquine (CQ), combined with Gd3+ than that after exposure to CQ alone, suggesting that Gd3+ activated autophagy in HEK293 cells. Furthermore, we found that Gd3+ reduced cell viability, which was more pronounced after CQ treatment. Our findings indicated that autophagy exerted a cytoprotective effect against Gd3+ toxicity, suggesting a potential link between autophagy and GBCA-associated adverse events.


Asunto(s)
Autofagia/efectos de los fármacos , Gadolinio/toxicidad , Animales , Muerte Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cloroquina/farmacología , Citoprotección/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Iones , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo
15.
Pharmacogenomics J ; 20(6): 823-830, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32467566

RESUMEN

Drug-induced interstitial lung disease (DILD) is a life-threatening adverse reaction. The Japanese population is more susceptible to DILD as compared with other populations, suggesting its pathogenesis could vary depending on ethnic genetic background. We conducted case-control studies to elucidate the association between DILD and HLA alleles in the Japanese. The 177 clinically diagnosed DILD patients and 3002 healthy controls for exploration and 55 DILD patients and 201 healthy controls for validation were genotyped for four HLA genes. HLA-DRB1*04:05 was significantly associated with DILD (corrected p = 0.014); this was also validated in the other set of patients/controls. Chemical drugs other than protein therapeutics showed this association (p = 1.7 × 10-4) . The Japanese population showed a higher HLA-DRB1*04:05 frequency than most other populations. In conclusion, HLA-DRB1*04:05 could be associated with DILD susceptibility in Japanese individuals, and its high general frequency may explain the high reported incidence of DILD in Japanese.


Asunto(s)
Alelos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/genética , Estudios de Asociación Genética/métodos , Cadenas HLA-DRB1/genética , Enfermedades Pulmonares Intersticiales/inducido químicamente , Enfermedades Pulmonares Intersticiales/genética , Adulto , Estudios de Casos y Controles , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Femenino , Predisposición Genética a la Enfermedad/epidemiología , Predisposición Genética a la Enfermedad/genética , Humanos , Japón/epidemiología , Enfermedades Pulmonares Intersticiales/epidemiología , Masculino , Persona de Mediana Edad , Vigilancia de la Población/métodos
16.
J Plant Res ; 133(2): 271-277, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31897741

RESUMEN

Studies of plant-silicon (Si) interaction benefit from safe, affordable and accurate methods to measure acid-insoluble silica (phytoliths) for a large number of plant samples. This study aimed to evaluate the comparability between two chemical methods to dissolve leaf silica, borate fusion and 1% sodium carbonate (Na2CO3) extraction, in combination of two detection methods (ICP, molybdenum-blue colorimetry).We compared the results obtained by these methods, using dried leaf samples of five tropical tree species that differ widely in Si concentrations (4 to 100 mg g DW-1). Leaf Si concentration values determined after the two extraction methods were highly correlated (y = 0.79x, R2 = 0.998). However, compared to the extraction with borate fusion, the 1% Na2CO3 method resulted in lower Si concentration per unit dry mass by 16% to 32% (mean of 24.2%). We also found that molybdenum-blue colorimetry method may interfere with certain extraction methods. A simple equation can be used to correct for systematic underestimation of Si contents determined after extraction with 1% Na2CO3, which is the least expensive and safest among commonly used methods for extraction of Si from land plants.


Asunto(s)
Boratos , Carbonatos , Fraccionamiento Químico/métodos , Plantas/química , Silicio/análisis
17.
J Cell Physiol ; 234(9): 15951-15962, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30714154

RESUMEN

Functional central airway epithelial cells (CAECs) from induced pluripotent stem cells (iPSCs) are an attractive potential cell source for central airway regeneration. The central airway epithelium, such as the tracheal epithelium, is composed of ciliated cells, goblet cells, and basal cells and has physiologically important functions such as the regulation of water volume on the airway surface by Cl- and water channels and the elimination of particles inhaled from the external environment by ciliary movement. Previous work from our group and from other research groups has reported the generation of airway epithelial cells from iPSCs. However, it remains unclear whether iPSC-derived CAECs express the various channels that are required for the regulation of water volume on the airway surface and whether these channels function properly. In this study, we generated CAECs from iPSCs supplemented with activin and bFGF using air-liquid interface culture. We then evaluated the physiological functioning of the iPSC-derived CAECs by examining the gene expression and transport functions of Cl - channels using a halide ion-sensitive yellow fluorescent protein and ciliary movement. Reverse-transcription polymerase chain reaction and immunohistochemistry indicated that various channel markers such as cystic fibrosis transmembrane conductance regulator (CFTR) and aquaporin (AQP) were present in iPSC-derived CAECs. Furthermore, the transport functions of Cl - channels and CFTR were successfully confirmed. Finally, ciliary movement was measured, and a ciliary beating frequency (CBF) of approximately 10 Hz was observed. These results demonstrate that CAECs generated by our method have physiological functions similar to those of native CAECs.

18.
Biochem Biophys Res Commun ; 511(2): 460-467, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30797556

RESUMEN

Methylmercury (MeHg) is a highly toxic pollutant, and is considered hazardous to human health. In our previous study, we found that MeHg induces autophagy and that Atg5-dependent autophagy plays a protective role against MeHg toxicity. To further characterize the role of autophagy in MeHg-induced toxicity, we examined the impact of autophagy on microtubules and nuclei under MeHg exposure using Atg5KO mouse embryonic fibroblasts (MEFs). Low concentrations of MeHg induced a decrease in α-tubulin and acetylated-tubulin in both wild-type and Atg5KO cells. While α-tubulin acetylation was promoted by treatment with tubacin, a selective inhibitor of histone deacetylase 6, MeHg treatment inhibits the increase of tubacin-induced acetylated-tubulin. However, similar effects were observed for treatment with either tubacin or tubacin + MeHg in wild-type and Atg5KO cells. We also found a significant increase in the number of multinuclear cells upon MeHg exposure in Atg5KO MEFs compared to wild-type MEFs. In addition, DNA double strand breaks (DSBs), measured by phosphorylation of the core histone H2A variant (H2AX) on serine 139 (γH2AX), markedly increased in Atg5KO MEFs compared to wild-type MEFs. Our results therefore suggest that autophagy is not a simple elimination pathway of MeHg-induced damaged proteins, but that it also plays a protective role in the context of MeHg-associated DSBs.


Asunto(s)
Autofagia/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Compuestos de Metilmercurio/toxicidad , Acetilación/efectos de los fármacos , Anilidas/metabolismo , Animales , Línea Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Ácidos Hidroxámicos/metabolismo , Ratones , Tubulina (Proteína)/metabolismo
19.
Planta ; 250(2): 667-674, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31104129

RESUMEN

MAIN CONCLUSION: Mercury accumulation in Arabidopsis shoots is accelerated by endodermis specific expression of fusion proteins of a bacterial mercury transporter MerC and a plant SNARE SYP121 under control of SCARECROW promoter. We previously demonstrated that the CaMV 35S RNA promoter (p35S)-driven ubiquitous expression of a bacterial mercury transporter MerC, fused with SYP121, an Arabidopsis SNARE protein increases mercury accumulation of Arabidopsis. To establish an improved fine-tuned mercury transport system in plants for phytoremediation, the present study generated and characterized transgenic Arabidopsis plants expressing MerC-SYP121 specifically in the root endodermis, which is a crucial cell type for root element uptake. We generated four independent transgenic Arabidopsis lines expressing a transgene encoding mCherry-MerC-SYP121 under the control of the endodermis-specific SCARECROW promoter (hereafter pSCR lines). Quantitative real-time PCR analysis showed that expression levels of the transgene in roots of the pSCR lines were 3-23% of the p35S driven-overexpressing line. Confocal microscopy analysis showed that mCherry-MerC-SYP121 was dominantly expressed in the endodermis of the meristematic zone as well as in the mature zone of the pSCR roots. Mercury accumulation in shoots of the pSCR lines exposed to inorganic mercury was overall higher than the wild-type and comparable to the p35S over-expressing line. These results suggest that endodermis-specific expression of the MerC-SYP121 fusion proteins in plant roots sufficiently enhances mercury uptake and accumulation into shoots, which would be an ideal phenotype for phytoremediation of mercury-contaminated environments.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Catión/metabolismo , Mercurio/metabolismo , Proteínas Qa-SNARE/metabolismo , Arabidopsis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Transporte Biológico , Proteínas de Transporte de Catión/genética , Meristema/genética , Meristema/metabolismo , Especificidad de Órganos , Fenotipo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Proteínas Qa-SNARE/genética , Proteínas Recombinantes de Fusión
20.
Opt Express ; 27(26): 38019-38027, 2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31878573

RESUMEN

The orbital angular momentum of an optical vortex field is found to twist high viscosity donor material to form a micron-scale 'spin jet'. This unique phenomenon manifests the helical trajectory of the optical vortex. Going beyond both the conventional ink jet and laser induced forward mass transfer (LIFT) patterning technologies, it also offers the formation and ejection of a micron-scale 'spin jet' of the donor material even with an ultrahigh viscosity of 4 Pa·s. This optical vortex laser induced forward mass transfer (OV-LIFT) patterning technique will enable the development of next generation printed photonic/electric/spintronic circuits formed of ultrahigh viscosity donor dots containing functional nanoparticles, such as quantum dots, metallic particles and magnetic ferrite particles, with ultrahigh spatial resolution. It can also potentially explore a completely new needleless drug injection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA