Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 325
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 22(11): 1391-1402, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34686865

RESUMEN

Epithelial cells have an ability termed 'cell competition', which is an immune surveillance-like function that extrudes precancerous cells from the epithelial layer, leading to apoptosis and clearance. However, it remains unclear how epithelial cells recognize and extrude transformed cells. Here, we discovered that a PirB family protein, leukocyte immunoglobulin-like receptor B3 (LILRB3), which is expressed on non-transformed epithelial cells, recognizes major histocompatibility complex class I (MHC class I) that is highly expressed on transformed cells. MHC class I interaction with LILRB3 expressed on normal epithelial cells triggers an SHP2-ROCK2 pathway that generates a mechanical force to extrude transformed cells. Removal of transformed cells occurs independently of natural killer (NK) cell or CD8+ cytotoxic T cell-mediated activity. This is a new mechanism in that the immunological ligand-receptor system generates a mechanical force in non-immune epithelial cells to extrude precancerous cells in the same epithelial layer.


Asunto(s)
Antígenos CD/metabolismo , Apoptosis , Competencia Celular , Células Epiteliales/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Neoplasias Pulmonares/metabolismo , Lesiones Precancerosas/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Antígenos CD/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Perros , Células Epiteliales/inmunología , Células Epiteliales/patología , Células HaCaT , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Células de Riñón Canino Madin Darby , Mecanotransducción Celular , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Lesiones Precancerosas/genética , Lesiones Precancerosas/inmunología , Lesiones Precancerosas/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Células RAW 264.7 , Receptores Inmunológicos/genética , Estrés Mecánico , Quinasas Asociadas a rho/metabolismo
2.
Mol Cell ; 69(3): 385-397.e8, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29336876

RESUMEN

Heterochromatin plays important roles in transcriptional silencing and genome maintenance by the formation of condensed chromatin structures, which determine the epigenetic status of eukaryotic cells. The trimethylation of histone H3 lysine 9 (H3K9me3), a target of heterochromatin protein 1 (HP1), is a hallmark of heterochromatin formation. However, the mechanism by which HP1 folds chromatin-containing H3K9me3 into a higher-order structure has not been elucidated. Here we report the three-dimensional structure of the H3K9me3-containing dinucleosomes complexed with human HP1α, HP1ß, and HP1γ, determined by cryogenic electron microscopy with a Volta phase plate. In the structures, two H3K9me3 nucleosomes are bridged by a symmetric HP1 dimer. Surprisingly, the linker DNA between the nucleosomes does not directly interact with HP1, thus allowing nucleosome remodeling by the ATP-utilizing chromatin assembly and remodeling factor (ACF). The structure depicts the fundamental architecture of heterochromatin.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Heterocromatina/metabolismo , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Microscopía por Crioelectrón/métodos , ADN/metabolismo , Histonas/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Metilación , Nucleosomas/metabolismo , Unión Proteica , Relación Estructura-Actividad , Factores de Transcripción/metabolismo
3.
Gastroenterology ; 167(3): 505-521.e19, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38583723

RESUMEN

BACKGROUND & AIMS: Gastric cancer is often accompanied by a loss of mucin 6 (MUC6), but its pathogenic role in gastric carcinogenesis remains unclear. METHODS: Muc6 knockout (Muc6-/-) mice and Muc6-dsRED mice were newly generated. Tff1Cre, Golph3-/-, R26-Golgi-mCherry, Hes1flox/flox, Cosmcflox/flox, and A4gnt-/- mice were also used. Histology, DNA and RNA, proteins, and sugar chains were analyzed by whole-exon DNA sequence, RNA sequence, immunohistochemistry, lectin-binding assays, and liquid chromatography-mass spectrometry analysis. Gastric organoids and cell lines were used for in vitro assays and xenograft experiments. RESULTS: Deletion of Muc6 in mice spontaneously causes pan-gastritis and invasive gastric cancers. Muc6-deficient tumor growth was dependent on mitogen-activated protein kinase activation, mediated by Golgi stress-induced up-regulation of Golgi phosphoprotein 3. Glycomic profiling revealed aberrant expression of mannose-rich N-linked glycans in gastric tumors, detected with banana lectin in association with lack of MUC6 expression. We identified a precursor of clusterin as a binding partner of mannose glycans. Mitogen-activated protein kinase activation, Golgi stress responses, and aberrant mannose expression are found in separate Cosmc- and A4gnt-deficient mouse models that lack normal O-glycosylation. Banana lectin-drug conjugates proved an effective treatment for mannose-rich murine and human gastric cancer. CONCLUSIONS: We propose that Golgi stress responses and aberrant glycans are important drivers of and promising new therapeutic targets for gastric cancer.


Asunto(s)
Ratones Noqueados , Mucina 6 , Neoplasias Gástricas , Animales , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Neoplasias Gástricas/genética , Glicosilación , Humanos , Mucina 6/metabolismo , Mucina 6/genética , Ratones , Línea Celular Tumoral , Carcinogénesis/metabolismo , Carcinogénesis/genética , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patología , Factor Trefoil-1/metabolismo , Factor Trefoil-1/genética , Organoides/metabolismo , Aparato de Golgi/metabolismo , Mucinas Gástricas/metabolismo , Modelos Animales de Enfermedad
4.
Genes Cells ; 29(2): 169-177, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38158708

RESUMEN

Hypoxia-inducible factor 1 (HIF1) is a transcription factor that is stabilized under hypoxia conditions via post-translational modifications. HIF1 regulates tumor malignancy and metastasis by gene transcriptions, such as Warburg effect and angiogenesis-related genes, in cancer cells. However, the HIF1 downstream genes show varied expressional patterns in different cancer types. Herein, we performed the hierarchical clustering based on the HIF1 downstream gene expression patterns using 1406 cancer cell lines crossing 30 types of cancer to understand the relationship between HIF1 downstream genes and the metastatic potential of cancer cell lines. Two types of cancers, including bone and breast cancers, were classified based on HIF1 downstream genes with significantly altered metastatic potentials. Furthermore, different HIF1 downstream gene subsets were extracted to discriminate each subtype for these cancer types. HIF1 downstream subtyping classification will help to understand the novel insight into tumor malignancy and metastasis in each cancer type.


Asunto(s)
Neoplasias de la Mama , Factor 1 Inducible por Hipoxia , Humanos , Femenino , Factor 1 Inducible por Hipoxia/genética , Factor 1 Inducible por Hipoxia/metabolismo , Línea Celular , Neoplasias de la Mama/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Línea Celular Tumoral , Hipoxia de la Célula/fisiología
5.
Genes Cells ; 29(4): 301-315, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38366725

RESUMEN

Antiandrogens were originally developed as therapeutic agents for prostate cancer but are also expected to be effective for breast cancer. However, the role of androgen signaling in breast cancer has long been controversial due to the limited number of experimental models. Our study aimed to comprehensively investigate the efficacy of antiandrogens on breast cancer. In the present study, a total of 18 breast cancer cell lines were treated with the agonist or antagonists of the androgen receptor (AR). Among the 18 cell lines tested, only T-47D cells proliferated in an androgen-dependent manner, while the other cell lines were almost irresponsive to AR stimulation. On the other hand, treatment with AR antagonists at relatively high doses suppressed the proliferation of not only T-47D cells but also some other cell lines including AR-low/negative cells. In addition, expression of the full-length AR and constitutively active AR splice variants, AR-V7 and ARV567es, was not correlated with sensitivity to AR antagonists. These data suggest that the antiproliferative effect of AR antagonists is AR-independent in some cases. Consistently, proliferation of AR-knockout BT-549 cells was inhibited by AR antagonists. Identification of biomarkers would be necessary to determine which breast cancer patients will benefit from these drugs.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Próstata , Masculino , Humanos , Antagonistas de Andrógenos/farmacología , Antagonistas de Andrógenos/uso terapéutico , Andrógenos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Próstata/metabolismo , Células MCF-7 , Línea Celular Tumoral
6.
Physiol Genomics ; 56(2): 128-135, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37955336

RESUMEN

The mammary glands are dynamic tissues affected by pregnancy-related hormones during the pregnancy-lactation cycle. Collagen production and its dynamics are essential to the remodeling of the mammary glands. Alterations of the mammary microenvironment and stromal cells during the pregnancy-lactation cycle are important for understanding the physiology of the mammary glands and the development of breast tumors. In this study, we performed an evaluation of collagen dynamics in the mammary fat pad during the pregnancy-lactation cycle. Reanalysis of single-cell RNA-sequencing (scRNA-Seq) data showed the ectopic collagen expression in the immune cells and cell-cell interactions for collagens with single-cell resolution. The scRNA-Seq data showed that type I and type III collagen were produced not only by stromal fibroblasts but also by lymphoid and myeloid cell types in the pregnancy phase. Furthermore, the total cell-cell interaction score for collagen interactions was dramatically increased in the pregnancy tissue. The data presented in this study provide evidence that immune cells contribute, at least in part, to mammary collagen dynamics. Our findings suggest that immune cells, including lymphoid and myeloid cells, might be supportive members of the extracellular matrix orchestration in the pregnancy-lactation cycle of the mammary glands.NEW & NOTEWORTHY Our study evaluated mammary gland collagen dynamics during the pregnancy-lactation cycle using single-cell RNA-sequencing data. We found ectopic collagen expression in immune cells and an increase in collagen interactions during pregnancy. Type I and type III collagen were produced by lymphoid, myeloid, and stromal fibroblast cells during pregnancy. These findings suggest that immune cells, including lymphoid and myeloid cells, play a crucial role in supporting the extracellular matrix in mammary glands during pregnancy-lactation cycles.


Asunto(s)
Colágeno Tipo III , Colágeno , Embarazo , Femenino , Animales , Colágeno Tipo III/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Lactancia/metabolismo , Hormonas/metabolismo , ARN/metabolismo , Glándulas Mamarias Animales/metabolismo
7.
Genes Cells ; 28(5): 333-337, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36876468

RESUMEN

Since the 1990s, journals have become increasingly online and open access. In fact, about 50% of articles published in 2021 were open access. The use of preprints (i.e., non-peer-reviewed articles) has also increased. However, there is limited awareness of these concepts among academics. Therefore, we conducted a questionnaire-based survey among members of the Molecular Biology Society of Japan. The survey was conducted between September 2022 and October 2022, with 633 respondents, 500 of whom (79.0%) were faculty members. In total, 478 (76.6%) respondents had published articles as open access, and 571 (91.5%) wanted to publish their articles in open access. Although 540 (86.5%) respondents knew about preprints, only 183 (33.9%) had posted preprints before. In the open-ended section of the questionnaire survey, several comments were made about the cost burdens associated with open access and the difficulty of how academic preprints are handled. Although open access is widespread, and recognition of preprints is increasing, some issues remain that need to be addressed. Academic and institutional support, and transformative agreement may help reduce the cost burden. Guidelines for handling preprints in academia are also important for responding to changes in the research environment.


Asunto(s)
Publicación de Acceso Abierto , Encuestas y Cuestionarios , Japón
8.
Genes Cells ; 28(4): 277-287, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36659836

RESUMEN

The homeobox family genes are often dysregulated in various cancer types. Particularly HOXB7 amplification and overexpression correlate with poor prognosis in various cancer such as gastric, pancreatic, and lung cancers. Moreover, HOXB7 is known to contribute to cancer progression by promoting epithelial to mesenchymal transition, anticancer drug resistance, and angiogenesis. In this study, we show that HOXB7 is coamplified with ERBB2 in a subset of breast cancer patients and HOXB7 expression correlates with poor prognosis in HER2-positive breast cancer patients. This clinical observation is supported by the following results-HOXB7 overexpression in an immortalized murine mammary gland epithelial cell line NMuMG induces cellular transformation in vitro, tumorigenesis, and lung metastasis through the activation of JAK-STAT signaling.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Glándulas Mamarias Humanas , Humanos , Ratones , Animales , Femenino , Genes Homeobox , Transición Epitelial-Mesenquimal , Glándulas Mamarias Humanas/metabolismo , Proteínas de Homeodominio/metabolismo , Transformación Celular Neoplásica/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
9.
J Immunol ; 209(6): 1173-1179, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35948397

RESUMEN

Fas, a member of the death receptor family, plays a central role in initiating cell death, a biological process crucial for immune homeostasis. However, the immunological and pathophysiological impacts to which enhanced Fas signaling gives rise remain to be fully understood. Here we demonstrate that TGF-ß-activated kinase 1 (TAK1) works as a negative regulator of Fas signaling in macrophages. Upon Fas engagement with high concentrations of FasL, mouse primary macrophages underwent cell death, and, surprisingly, Fas stimulation led to proteolytic cleavage of gasdermin (GSDM) family members GSDMD and GSDME, a hallmark of pyroptosis, in a manner dependent on caspase enzymatic activity. Remarkably, TAK1-deficient macrophages were highly sensitive to even low concentrations of FasL. Mechanistically, TAK1 negatively modulated RIPK1 kinase activity to protect macrophages from excessive cell death. Intriguingly, mice deficient for TAK1 in macrophages (TAK1mKO mice) spontaneously developed tissue inflammation, and, more important, the emergence of inflammatory disease symptoms was markedly diminished in TAK1mKO mice harboring a catalytically inactive RIPK1. Taken together, these findings not only revealed an unappreciated role of TAK1 in Fas-induced macrophage death but provided insight into the possibility of perturbation of immune homeostasis driven by aberrant cell death.


Asunto(s)
Quinasas Quinasa Quinasa PAM , Macrófagos , Animales , Caspasas/metabolismo , Muerte Celular , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Receptores de Muerte Celular/metabolismo
10.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33853940

RESUMEN

Helicobacter pylori, a pathogen responsible for gastric cancer, contains a unique glycolipid, cholesteryl-α-D-glucopyranoside (CGL), in its cell wall. Moreover, O-glycans having α1,4-linked N-acetylglucosamine residues (αGlcNAc) are secreted from gland mucous cells of gastric mucosa. Previously, we demonstrated that CGL is critical for H. pylori survival and that αGlcNAc serves as antibiotic against H. pylori by inhibiting CGL biosynthesis. In this study, we tested whether a cholesterol analog, cholest-4-en 3-one (cholestenone), exhibits antibacterial activity against H. pylori in vitro and in vivo. When the H. pylori standard strain ATCC 43504 was cultured in the presence of cholestenone, microbial growth was significantly suppressed dose-dependently relative to microbes cultured with cholesterol, and cholestenone inhibitory effects were not altered by the presence of cholesterol. Morphologically, cholestenone-treated H. pylori exhibited coccoid forms. We obtained comparable results when we examined the clarithromycin-resistant H. pylori strain "2460." We also show that biosynthesis of CGL and its derivatives cholesteryl-6-O-tetradecanoyl-α-D-glucopyranoside and cholesteryl-6-O-phosphatidyl-α-D-glucopyranoside in H. pylori is remarkably inhibited in cultures containing cholestenone. Lastly, we asked whether orally administered cholestenone eradicated H. pylori strain SS1 in C57BL/6 mice. Strikingly, mice fed a cholestenone-containing diet showed significant eradication of H. pylori from the gastric mucosa compared with mice fed a control diet. These results overall strongly suggest that cholestenone could serve as an oral medicine to treat patients infected with H. pylori, including antimicrobial-resistant strains.


Asunto(s)
Colestenonas/farmacología , Colesterol/análogos & derivados , Helicobacter pylori/metabolismo , Acetilglucosamina/farmacología , Animales , Antibacterianos/farmacología , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Colestenonas/metabolismo , Colesterol/biosíntesis , Colesterol/metabolismo , Femenino , Glucosiltransferasas/metabolismo , Glucolípidos/farmacología , Infecciones por Helicobacter/tratamiento farmacológico , Helicobacter pylori/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Polisacáridos/farmacología
11.
Cancer Cell Int ; 23(1): 57, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37005661

RESUMEN

BACKGROUND: In vivo investigations with cancer cells have powerful tools to discover cancer progression mechanisms and preclinical candidate drugs. Among these in vivo experimental models, the establishment of highly malignancy cell lines with xenograft has been frequently used. However, few previous researches targeted malignancy-related genes whose protein levels translationally changed. Therefore, this study aimed to identify malignancy-related genes which contributed to cancer progression and changed at the protein level in the in vivo selected cancer cell lines. METHODS: We established the high malignancy breast cancer cell line (LM05) by orthotopic xenograft as an in vivo selection method. To explore the altered genes by translational or post-translational regulation, we analyzed the protein production by western blotting in the highly malignant breast cancer cell line. Functional analyses of the altered genes were performed by in vitro and in vivo experiments. To reveal the molecular mechanisms of the regulation with protein level, we evaluated post-translational modification by immunoprecipitation. In addition, we evaluated translational production by click reaction-based purification of nascent protein. RESULTS: As a result, NF-κB inducing kinase (NIK) increased at the protein level and promoted the nuclear localization of NF-κB2 (p52) and RelB in the highly malignant breast cancer cell line. The functional analyses indicated the NIK upregulation contributed to tumor malignancy via cancer-associated fibroblasts (CAFs) attraction and partially anti-apoptotic activities. Additionally, the immunoprecipitation experiment revealed that the ubiquitination of NIK decreased in LM05 cells. The decline in NIK ubiquitination was attributed to the translational downregulation of cIAP1. CONCLUSIONS: Our study identified a dysregulated mechanism of NIK production by the suppression of NIK post-modification and cIAP1 translation. The aberrant NIK accumulation promoted tumor growth in the highly malignant breast cancer cell line.

12.
Pathol Int ; 73(6): 246-254, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37036163

RESUMEN

Sessile serrated lesions (SSLs) and microvesicular hyperplastic polyps (MVHPs) are colorectal lesions displaying gastric differentiation. Griffonia simplicifolia-II (GS-II) is a lectin specific to terminal α/ßGlcNAc residues. Here, we assessed GS-II binding and performed immunostaining for HIK1083 (specific to terminal αGlcNAc residues), MUC5AC, MUC6, and special AT-rich sequence binding protein 2 (SATB2) in SSLs, MVHPs, and tubular adenomas (TAs). We observed MUC5AC positivity in 28 of 30 SSLs, but in only three of 23 TAs. Moreover, 24 of 30 SSLs were MUC6-positive, while none of the 23 TAs were MUC6-positive. None of the 30 SSLs or 23 TAs showed HIK1083 positivity. All 30 SSLs and 26 MVHPs were GS-II-positive, while only seven of 23 were in TAs. GS-II staining was mainly distributed in the Golgi region, but SSLs and MVHPs showed goblet cell distribution, in 20 of 30 and 19 of 26 cases, respectively. All SSLs, MVHPs, and TAs were SATB2-positive, but 21 of 30 SSLs and 12 of 26 MVHPs showed decreased staining intensity relative to adjacent mucosa, a decrease seen in only two of 23 in TAs. These results indicate overall that increased terminal ßGlcNAc and decreased SATB2 expression are characteristics of SSLs and MVHPs.


Asunto(s)
Adenoma , Pólipos del Colon , Neoplasias Colorrectales , Proteínas de Unión a la Región de Fijación a la Matriz , Humanos , Pólipos del Colon/patología , Griffonia/metabolismo , Regulación hacia Abajo , Adenoma/patología , Células Caliciformes/patología , Neoplasias Colorrectales/patología , Factores de Transcripción/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo
13.
Am J Respir Cell Mol Biol ; 67(6): 708-719, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36108172

RESUMEN

Phenotypic alterations in the lung epithelium have been widely implicated in chronic obstructive pulmonary disease (COPD) pathogenesis, but the precise mechanisms orchestrating this persistent inflammatory process remain unknown because of the complexity of lung parenchymal and mesenchymal architecture. To identify cell type-specific mechanisms and cell-cell interactions among the multiple lung resident cell types and inflammatory cells that contribute to COPD progression, we profiled 57,918 cells from lungs of patients with COPD, smokers without COPD, and never-smokers using single-cell RNA sequencing technology. We predicted pseudotime of cell differentiation and cell-to-cell interaction networks in COPD. Although epithelial components in never-smokers were relatively uniform, smoker groups represent extensive heterogeneity in epithelial cells, particularly in alveolar type 2 (AT2) clusters. Among AT2 cells, which are generally regarded as alveolar progenitors, we identified a unique subset that increased in patients with COPD and specifically expressed a series of chemokines including CXCL1 and CXCL8. A trajectory analysis revealed that the inflammatory AT2 cell subpopulation followed a unique differentiation path, and a prediction model of cell-to-cell interactions inferred significantly increased intercellular networks of inflammatory AT2 cells. Our results identify previously unidentified cell subsets and provide an insight into the biological and clinical characteristics of COPD pathogenesis.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/patología , Pulmón/patología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales/metabolismo , Diferenciación Celular
14.
Cancer Sci ; 113(11): 3852-3863, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35959971

RESUMEN

Gastric cancer is the second leading cause of cancer deaths worldwide, and more understanding of its molecular basis is urgently needed. Gastric gland mucin secreted from pyloric gland cells, mucous neck cells, and cardiac gland cells of the gastric mucosa harbors unique O-glycans carrying terminal α1,4-linked N-acetylglucosamine (αGlcNAc) residues. We previously reported that αGlcNAc loss correlated positively with poor outcomes for patients with differentiated-type gastric cancer. However, the molecular mechanisms underlying these outcomes remained poorly understood. Here, we examined the effects of upregulated αGlcNAc expression on malignant phenotypes of the differentiated-type gastric cancer cell lines, AGS and MKN7. Upregulation of αGlcNAc following ectopic expression of its biosynthetic enzyme attenuated cell proliferation, motility, and invasiveness of AGS and MKN7 cells in vitro. Moreover, AGS cell tumorigenicity was significantly suppressed by αGlcNAc overexpression in a xenograft model. To define the molecular mechanisms underlying these phenotypes, we investigated αGlcNAc binding proteins in AGS cells and identified Mucin-1 (MUC1) and podocalyxin. Both proteins were colocalized with αGlcNAc on human gastric cancer cells. We also found that αGlcNAc was bound to MUC1 in murine normal gastric mucosa. When we assessed the effects of αGlcNAc binding to MUC1, we found that αGlcNAc blocked galectin-3 binding to MUC1, phosphorylation of the MUC1 C-terminus, and recruitment of Src and ß-catenin to that C-terminus. These results suggest that αGlcNAc regulates cancer cell phenotypes by dampening MUC1 signal transduction.


Asunto(s)
Adenocarcinoma , Neoplasias Gástricas , Humanos , Ratones , Animales , Neoplasias Gástricas/patología , Acetilglucosamina/metabolismo , Mucina 6/metabolismo , Mucina-1/genética , Adenocarcinoma/patología , Mucinas Gástricas/metabolismo , Mucosa Gástrica/patología , Transducción de Señal
15.
Cancer Sci ; 113(2): 576-586, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34808019

RESUMEN

Biomarkers for early diagnosis of pancreatic cancer are greatly needed, as the high fatality of this cancer is in part due to delayed detection. α1,4-linked N-acetylglucosamine (αGlcNAc), a unique O-glycan specific to gastric gland mucus, is biosynthesized by α1,4-N-acetylglucosaminyltransferase (α4GnT) and primarily bound at the terminal glycosylated residue to scaffold protein MUC6. We previously reported that αGlcNAc expression decreases at early stages of neoplastic pancreatic lesions, followed by decreased MUC6 expression, although functional effects of these outcomes were unknown. Here, we ectopically expressed α4GnT, the αGlcNAc biosynthetic enzyme, together with MUC6 in the human pancreatic cancer cell lines MIA PaCa-2 and PANC-1, neither of which expresses α4GnT and MUC6. We observed significantly suppressed proliferation in both lines following coexpression of α4GnT and MUC6. Moreover, cellular motility decreased following MUC6 ectopic expression, an effect enhanced by cotransduction with α4GnT. MUC6 expression also attenuated invasiveness of both lines relative to controls, and this effect was also enhanced by additional α4GnT expression. We found αGlcNAc-bound MUC6 formed a complex with trefoil factor 2. Furthermore, analysis of survival curves of patients with pancreatic ductal adenocarcinoma using a gene expression database showed that samples marked by higher A4GNT or MUC6 mRNA levels were associated with relatively favorable prognosis. These results strongly suggest that αGlcNAc and MUC6 function as tumor suppressors in pancreatic cancer and that decreased expression of both may serve as a biomarker of tumor progression to pancreatic cancer.


Asunto(s)
Acetilglucosamina/metabolismo , Mucina 6/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Glicosilación , Humanos , Mucina 6/genética , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Pronóstico , ARN Mensajero/metabolismo , Factor Trefoil-2/metabolismo , Proteínas Supresoras de Tumor/genética
16.
Hum Genet ; 141(3-4): 865-875, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34536124

RESUMEN

Mutations in the OTOF gene are a common cause of hereditary hearing loss and the main cause of auditory neuropathy spectrum disorder (ANSD). Although it is reported that most of the patients with OTOF mutations have stable, congenital or prelingual onset severe-to-profound hearing loss, some patients show atypical clinical phenotypes, and the genotype-phenotype correlation in patients with OTOF mutations is not yet fully understood. In this study, we aimed to reveal detailed clinical characteristics of OTOF-related hearing loss patients and the genotype-phenotype correlation. Detailed clinical information was available for 64 patients in our database who were diagnosed with OTOF-related hearing loss. As reported previously, most of the patients (90.6%) showed a "typical" phenotype; prelingual and severe-to-profound hearing loss. Forty-seven patients (73.4%) underwent cochlear implantation surgery and showed successful outcomes; approximately 85-90% of the patients showed a hearing level of 20-39 dB with cochlear implant and a Categories of Auditory Performance (CAP) scale level 6 or better. Although truncating mutations and p.Arg1939Gln were clearly related to severe phenotype, almost half of the patients with one or more non-truncating mutations showed mild-to-moderate hearing loss. Notably, patients with p.His513Arg, p.Ile1573Thr and p.Glu1910Lys showed "true" auditory neuropathy-like clinical characteristics. In this study, we have clarified genotype-phenotype correlation and efficacy of cochlear implantation for OTOF-related hearing loss patients in the biggest cohort studied to date. We believe that the clinical characteristics and genotype-phenotype correlation found in this study will support preoperative counseling and appropriate intervention for OTOF-related hearing loss patients.


Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Estudios de Asociación Genética , Pérdida Auditiva/genética , Pérdida Auditiva Central , Pérdida Auditiva Sensorineural/genética , Humanos , Japón , Proteínas de la Membrana/genética , Mutación
17.
Histochem Cell Biol ; 157(6): 671-684, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35353213

RESUMEN

Gastric gland mucin consists of core protein MUC6 with residues heavily glycosylated by unique O-glycans carrying α1,4-linked N-acetylglucosamine (αGlcNAc). αGlcNAc-glycosylated MUC6 protein is seen in normal gastric and duodenal glands. Decreased αGlcNAc glycosylation on MUC6-positive tumor cells is often observed in premalignant lesions of the stomach, pancreas, and bile duct, and decreased MUC6 expression is seen in invasive cancer of these organs. Lung cancer (LC) is the most common cause of cancer death worldwide. Recently, the adenocarcinoma subtype has become the most common histological subtype of LC, and one of its invasive forms is invasive mucinous adenocarcinoma (IMA). Currently, prognostic markers of LC IMA are unknown. Here, we analyzed MUC5AC, MUC6, and αGlcNAc expression in 54 IMA LC cases. MUC5AC was positively expressed in 50 (93%), MUC6 in 38 (70%), and αGlcNAc in 19 (35%). Each expression level was scored from 0 to 3. The αGlcNAc expression score was significantly decreased relative to MUC6 (P < 0.001). Interestingly, disease-free survival was significantly higher in MUC6-positive than MUC6-negative cases based on the log-rank test (P = 0.021). For in vitro analysis, we ectopically expressed MUC6 in A549 cells, derived from LC and harboring a KRAS mutation. MUC6-expressing A549 cells showed significantly lower proliferation, motility, and invasiveness than control cells. Finally, F-actin staining in MUC6-expressing cells revealed a decrease or loss of filopodia associated with decreased levels of FSCN transcripts, which encodes an actin-bundling protein fascin1 necessary for cell migration. We conclude that MUC6 expression is a preferable prognostic biomarker in IMA LC.


Asunto(s)
Adenocarcinoma Mucinoso , Adenocarcinoma , Adenocarcinoma/metabolismo , Mucinas Gástricas/metabolismo , Humanos , Pulmón/metabolismo , Mucina 5AC/metabolismo , Mucina 6/análisis , Mucina 6/metabolismo , Pronóstico
18.
Pathol Int ; 72(5): 300-306, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35262218

RESUMEN

Bronchiolar adenoma/ciliated muconodular papillary tumor is a lung neoplasm exhibiting various degrees of proximal and distal bronchiolar differentiation. Here, we evaluated distribution of MUC5AC and MUC5B in bronchiolar adenoma/ciliated muconodular papillary tumor for comparison with that seen in normal respiratory tract. In normal respiratory tract, MUC5AC was mainly distributed in large bronchi, while MUC5B was distributed in bronchi, bronchioles, and submucosal glands. In bronchiolar adenoma/ciliated muconodular papillary tumor, MUC5AC was primarily distributed in luminal cells of large airspaces, and MUC5B was distributed in luminal cells of small airspaces and mucinous glands, in addition to large airspaces, regardless of distal or proximal differentiation. In particular, MUC5B was distributed in non-mucinous club and ciliated cells in both the normal respiratory tract and bronchiolar adenoma/ciliated muconodular papillary tumor. These results indicate that MUC5AC and MUC5B distribution in bronchiolar adenoma/ciliated muconodular papillary tumor is similar to that seen in normal respiratory tract, suggestive of organoid differentiation simulating the normal lung.


Asunto(s)
Adenoma , Neoplasias Pulmonares , Adenoma/patología , Bronquiolos/patología , Humanos , Neoplasias Pulmonares/patología , Mucina 5AC , Organoides/patología
19.
Glycobiology ; 31(2): 137-150, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-32601684

RESUMEN

Loss-of-function variants in CHST14 cause a dermatan 4-O-sulfotransferase deficiency named musculocontractural Ehlers-Danlos syndrome-CHST14 (mcEDS-CHST14), resulting in complete depletion of the dermatan sulfate moiety of decorin glycosaminoglycan (GAG) chains, which is replaced by chondroitin sulfate. Recently, we uncovered structural alteration of GAG chains in the skin of patients with mcEDS-CHST14. Here, we conducted the first systematic investigation of Chst14 gene-deleted homozygote (Chst14-/-) mice. We used skin samples of wild-type (Chst14+/+) and Chst14-/- mice. Mechanical fragility of the skin was measured with a tensile test. Pathology was observed using light microscopy, decorin immunohistochemistry and electron microscopy (EM) including cupromeronic blue (CB) staining. Quantification of chondroitin sulfate and dermatan sulfate was performed using enzymatic digestion followed by anion-exchange HPLC. In Chst14-/- mice, skin tensile strength was significantly decreased compared with that in Chst14+/+ mice. EM showed that collagen fibrils were oriented in various directions to form disorganized collagen fibers in the reticular layer. Through EM-based CB staining, rod-shaped linear GAG chains were found to be attached at one end to collagen fibrils and protruded outside of the fibrils, in contrast to them being round and wrapping the collagen fibrils in Chst14+/+ mice. A very low level of dermatan sulfate disaccharides was detected in the skin of Chst14-/- mice by anion-exchange chromatography. Chst14-/- mice, exhibiting similar abnormalities in the GAG structure of decorin and collagen networks in the skin, could be a reasonable model for skin fragility of patients with mcEDS-CHST14, shedding light on the role of dermatan sulfate in maintaining skin strength.


Asunto(s)
Síndrome de Ehlers-Danlos/genética , Piel/metabolismo , Sulfotransferasas/genética , Animales , Síndrome de Ehlers-Danlos/patología , Ratones , Ratones Noqueados , Sulfotransferasas/deficiencia , Sulfotransferasas/metabolismo
20.
Genes Cells ; 25(2): 111-123, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31849141

RESUMEN

Bone is one of the most common metastatic sites of breast cancer, and bone metastasis profoundly affects the quality of life of breast cancer patients. Bone metastasis is commonly observed among all the subtypes of breast cancer; however, its molecular mechanism has been analyzed only in triple-negative subtype of breast cancer (TNBC). To characterize the molecular mechanisms of bone metastasis of luminal breast cancer, we established a bone-metastatic model of the MCF7, luminal breast cancer cell line, with enhanced osteolytic activity by intracaudal arterial injection (CAI). Pathological analysis of the established cell lines revealed that they exhibited fierce osteolytic ability by promoting osteoclast differentiation and activity. The signature genes extracted from highly osteolytic MCF7 cell lines were differed from those of bone-metastatic TNBC cell lines. Our results suggest that unique mechanisms of osteolysis in bone-metastatic lesions of luminal breast cancer. In addition, several up-regulated genes in MCF7-BM (Bone Metastasis) 02 cell lines correlated with poor prognosis with luminal breast cancer patients. Our findings support further study on the bone-metastatic mechanisms of luminal breast cancer.


Asunto(s)
Neoplasias Óseas/patología , Neoplasias de la Mama/patología , Osteólisis/patología , Animales , Neoplasias Óseas/genética , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA