Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Sci Technol Adv Mater ; 25(1): 2346068, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774495

RESUMEN

Since carbon (C) atom has a variety of chemical bonds via hybridization between s and p atomic orbitals, it is well known that there are robust carbon materials. In particular, discovery of C60 has been an epoch making to cultivate nanocarbon fields. Since then, nanocarbon materials such as nanotube and graphene have been reported. It is interesting to note that C60 is soluble and volatile unlike nanotube and graphene. This indicates that C60 film is easy to be produced on any kinds of substrates, which is advantage for device fabrication. In particular, electron-/photo-induced C60 polymerization finally results in formation of one-dimensional (1D) metallic peanut-shaped and 2D dumbbell-shaped semiconducting C60 polymers, respectively. This enables us to control the physicochemical properties of C60 films using electron-/photo-lithography techniques. In this review, we focused on the structures, fundamental properties, and potential applications of the low-dimensional C60 polymers and other nanocarbons such as C60 peapods, wavy-structured graphene, and penta-nanotubes with topological defects. We hope this review will provide new insights for producing new novel nanocarbon materials and inspire broad readers to cultivate new further research in carbon materials.


We review the structures, fundamental properties, and applications of low-dimensional C60 polymers and other related nanocarbons such as C60 peapods, wavy-structured graphene, and penta-nanotubes from a standpoint of topological defects.

2.
Small ; 17(26): e2101754, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33988898

RESUMEN

The directed self-assembly of electronic circuits using functional metallic inks has attracted intensive attention because of its high compatibility with extensive applications ranging from soft printed circuits to wearable devices. However, the typical resolution of conventional self-assembly technologies is not sufficient for practical applications in the rapidly evolving additively manufactured electronics (AMEs) market. Herein, an ultrahigh-resolution self-assembly strategy is reported based on a dual-surface-architectonics (DSA) process. Inspired by the Tokay gecko, the approach is to endow submicrometer-scale surface regions with strong adhesion force toward metallic inks via a series of photoirradiation and chemical polarization treatments. The prepared DSA surface enables the directed self-assembly of electronic circuits with unprecedented 600 nm resolution, suppresses the coffee-ring effect, and results in a reliable conductivity of 14.1 ± 0.6 µΩ cm. Furthermore, the DSA process enables the layer-by-layer fabrication of fully printed organic thin-film transistors with a short channel length of 1 µm, which results in a large on-off ratio of 106 and a high field-effect mobility of 0.5 cm2  V-1  s-1 .


Asunto(s)
Transistores Electrónicos , Dispositivos Electrónicos Vestibles , Conductividad Eléctrica , Electrónica , Tinta
3.
Nano Lett ; 17(4): 2287-2293, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28358199

RESUMEN

Self-assembled organic molecules can potentially be an excellent source of charge and spin for two-dimensional (2D) atomic-layer superconductors. Here we investigate 2D heterostructures based on In atomic layers epitaxially grown on Si and highly ordered metal-phthalocyanine (MPc, M = Mn, Cu) through a variety of techniques: scanning tunneling microscopy, electron transport measurements, angle-resolved photoemission spectroscopy, X-ray magnetic circular dichroism, and ab initio calculations. We demonstrate that the superconducting transition temperature (Tc) of the heterostructures can be modified in a controllable manner. Particularly, the substitution of the coordinated metal atoms from Mn to Cu is found to reverse the Tc shift from negative to positive directions. This distinctive behavior is attributed to a competition of charge and spin effects, the latter of which is governed by the directionality of the relevant d-orbitals. The present study shows the effectiveness of molecule-induced surface doping and the significance of microscopic understanding of the molecular states in these 2D heterostructures.

4.
Angew Chem Int Ed Engl ; 56(29): 8398-8401, 2017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-27930851

RESUMEN

A method for controlling the self-assembly of fullerene C60 molecules into nanotubules in the fcc phase, devoid of entrapped solvent, has been established in a thin film microfluidic device. The micron length C60 nanotubules, with individual hollow diameters of 100 to 400 nm, are formed under continuous flow processing during high shear micromixing of water and a toluene solution of the fullerene, in the absence of surfactant, and without the need for further down-stream processing. TEM revealed pores on the surface of the nanotubes, and the isolated material has a much higher response to small molecule sensing than that for analogous material formed using multistep batch processing.

5.
J Chem Phys ; 144(11): 114703, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-27004889

RESUMEN

Triphenylphosphine ligand-protected Au9 clusters deposited onto titania nanosheets show three different atomic configurations as observed by scanning transmission electron microscopy. The configurations observed are a 3-dimensional structure, corresponding to the previously proposed Au9 core of the clusters, and two pseudo-2-dimensional (pseudo-2D) structures, newly found by this work. With the help of density functional theory (DFT) calculations, the observed pseudo-2D structures are attributed to the low energy, de-ligated structures formed through interaction with the substrate. The combination of scanning transmission electron microscopy with DFT calculations thus allows identifying whether or not the deposited Au9 clusters have been de-ligated in the deposition process.

6.
Nano Lett ; 15(7): 4793-8, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26098301

RESUMEN

Surface-supported molecular motors are nanomechanical devices of particular interest in terms of future nanoscale applications. However, the molecular motors realized so far consist of covalently bonded groups that cannot be reconfigured without undergoing a chemical reaction. Here we demonstrate that a platinum-porphyrin-based supramolecularly assembled dimer supported on a Au(111) surface can be rotated with high directionality using the tunneling current of a scanning tunneling microscope (STM). Rotational direction of this molecular motor is determined solely by the surface chirality of the dimer, and most importantly, the chirality can be inverted in situ through a process involving an intradimer rearrangement. Our result opens the way for the construction of complex molecular machines on a surface to mimic at a smaller scale versatile biological supramolecular motors.

7.
Phys Rev Lett ; 113(24): 247004, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25541798

RESUMEN

We have studied the superconducting Si(111)-(√7×√3)-In surface using a ³He-based low-temperature scanning tunneling microscope. Zero-bias conductance images taken over a large surface area reveal that vortices are trapped at atomic steps after magnetic fields are applied. The crossover behavior from Pearl to Josephson vortices is clearly identified from their elongated shapes along the steps and significant recovery of superconductivity within the cores. Our numerical calculations combined with experiments clarify that these characteristic features are determined by the relative strength of the interterrace Josephson coupling at the atomic step.

8.
Langmuir ; 29(24): 7551-6, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23742183

RESUMEN

With their capability for real-time and label-free detection of targets ranging from gases to biological molecules, nanomechanical sensors are expected to contribute to various fields, such as medicine, security, and environmental science. For practical applications, one of the major issues of nanomechanical sensors is the difficulty of coating receptor layers on their surfaces to which target molecules adsorb or react. To have measurable deflection, a single-side coating is commonly applied to cantilever-type geometry, and it requires specific methods or protocols, such as inkjet spotting or gold-thiol chemistry. If we can apply a double-side coating to nanomechanical sensors, it allows almost any kind of coating technique including dip coating methods, making nanomechanical sensors more useful with better user experiences. Here we address the feasibility of the double-side coating on nanomechanical sensors demonstrated by a membrane-type surface stress sensor (MSS) and verify its working principle by both finite element analysis (FEA) and experiments. In addition, simple hand-operated dip coating is demonstrated as a proof of concept, achieving practical receptor layers without any complex instrumentation. Because the double-side coating is compatible with batch protocols such as dip coating, double-side-coated MSS represents a new paradigm of one-chip-one-channel (channels on a chip are all coated with the same receptor layers) shifting from the conventional one-chip-multiple-channel (channels on a chip are coated with different receptor layers) paradigm.


Asunto(s)
Membranas Artificiales , Nanoestructuras , Análisis de Elementos Finitos , Propiedades de Superficie
9.
Nano Lett ; 12(11): 5500-3, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23057633

RESUMEN

The synthesis of silicene, graphene-like silicon, has generated very strong interest. Here, we reveal the growth of high aspect ratio, perfectly straight, and aligned silicon nanoribbons, exhibiting pyramidal cross section. They are multistacks of silicene and show in angle-resolved photoemission cone-like dispersion of their π and π* bands, at the X[overline] point of their one-dimensional Brillouin zone, with Fermi velocity of ~1.3 × 10(6) m sec(-1), which is very promising for potential applications.

10.
Sci Adv ; 9(16): eadg3289, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37083527

RESUMEN

Nanowire networks (NWNs) mimic the brain's neurosynaptic connectivity and emergent dynamics. Consequently, NWNs may also emulate the synaptic processes that enable higher-order cognitive functions such as learning and memory. A quintessential cognitive task used to measure human working memory is the n-back task. In this study, task variations inspired by the n-back task are implemented in a NWN device, and external feedback is applied to emulate brain-like supervised and reinforcement learning. NWNs are found to retain information in working memory to at least n = 7 steps back, remarkably similar to the originally proposed "seven plus or minus two" rule for human subjects. Simulations elucidate how synapse-like NWN junction plasticity depends on previous synaptic modifications, analogous to "synaptic metaplasticity" in the brain, and how memory is consolidated via strengthening and pruning of synaptic conductance pathways.


Asunto(s)
Memoria a Corto Plazo , Nanocables , Humanos , Plasticidad Neuronal , Aprendizaje , Sinapsis
11.
Nanotechnology ; 23(21): 215601, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22551670

RESUMEN

Boron nitride nanotube (BNNT) films were grown on silicon/silicon dioxide (Si/SiO(2)) substrates by a catalytic chemical vapor deposition (CVD) method in a horizontal electric furnace. The effects of growth temperature and catalyst concentration on the morphology of the films and the structure of individual BNNTs were systematically investigated. The BNNT films grown at 1200 and 1300 °C consisted of a homogeneous dispersion of separate tubes in random directions with average outer diameters of ~30 and ~60 nm, respectively. Meanwhile, the films grown at 1400 °C comprised of BNNT bundles in a flower-like morphology, which included thick tubes with average diameters of ~100 nm surrounded by very thin ones with diameters down to ~10 nm. In addition, low catalyst concentration led to the formation of BNNT films composed of entangled curly tubes, while high catalyst content resulted in very thick tubes with diameters up to ~350 nm in a semierect flower-like morphology. Extensive transmission electron microscopy (TEM) investigations revealed the diameter-dependent growth mechanisms for BNNTs; namely, thin and thick tubes with closed ends grew by base-growth and tip-growth mechanisms, respectively. However, high catalyst concentration motivated the formation of filled-with-catalyst BNNTs, which grew open-ended with a base-growth mechanism.


Asunto(s)
Compuestos de Boro/química , Cristalización/métodos , Nanotubos/química , Nanotubos/ultraestructura , Gases/química , Calor , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
12.
J Nanosci Nanotechnol ; 12(5): 4007-11, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22852340

RESUMEN

Adsorption and electronic structure of octithiophene (8T) molecules on Cu(III) and Au(III) surfaces are investigated using scanning tunneling microscopy (STM) and spectroscopy (STS) at room temperature. We find a large difference in adsorption behavior of 8T molecules on the two surfaces. At the initial stage of adsorption, 8T molecules are stabilized in the form of molecular chain on a terrace of Cu(III), whereas neither such chain structure nor isolated 8T molecules have been observed on a terrace of Au(III). By increasing the amount of adsorbed molecules, a disordered monolayer film is formed on Cu(III) while a well-ordered monolayer film is formed on Au(III). From the spectroscopic investigations using bias-dependent STM images and STS spectra and by comparing the data with theoretical calculations, it is found that the electronic property of 8T molecules in the molecular chain on Cu(III) is different from that of a free-standing 8T molecule while that in the monolayer film on Au(III) keeps original character of the free-standing 8T molecule. The present study shows that adsorption of 8T molecules on Cu(III) results in a formation of adsorption-induced states near the Fermi level.

13.
Sensors (Basel) ; 12(11): 15873-87, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-23202237

RESUMEN

We present a new generation of piezoresistive nanomechanical Membrane-type Surface stress Sensor (MSS) chips, which consist of a two dimensional array of MSS on a single chip. The implementation of several optimization techniques in the design and microfabrication improved the piezoresistive sensitivity by 3~4 times compared to the first generation MSS chip, resulting in a sensitivity about ~100 times better than a standard cantilever-type sensor and a few times better than optical read-out methods in terms of experimental signal-to-noise ratio. Since the integrated piezoresistive read-out of the MSS can meet practical requirements, such as compactness and not requiring bulky and expensive peripheral devices, the MSS is a promising transducer for nanomechanical sensing in the rapidly growing application fields in medicine, biology, security, and the environment. Specifically, its system compactness due to the integrated piezoresistive sensing makes the MSS concept attractive for the instruments used in mobile applications. In addition, the MSS can operate in opaque liquids, such as blood, where optical read-out techniques cannot be applied.

14.
Nanoscale ; 14(39): 14552-14557, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36149385

RESUMEN

We have found that tungsten oxide nanorods have a very large enhancement effect on Raman scattering. The nanorods with adsorbed 12CO and 13CO at the ratio of 1 : 1 were dispersed on a Si substrate and Raman mapping was performed. The Raman images of 12CO and 13CO were completely different, indicating that a very small number of molecules at the single-molecule level were observed. We also confirmed the characteristic blinking phenomenon when single-molecule detection was performed. The very large enhancement effect of Raman scattering can be attributed to the {001}CS structure of the tungsten oxide nanorods. It was confirmed from the DFT calculation results that the {001}CS structure exhibits two-dimensional electrical conduction properties.

15.
ACS Appl Mater Interfaces ; 14(6): 8146-8156, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35104116

RESUMEN

Cost-effective copper conductive inks are considered as the most promising alternative to expensive silver conductive inks for use in printed electronics. However, the low stability and high sintering temperature of copper inks hinder their practical application. Herein, we develop rapidly customizable and stable copper-nickel complex inks that can be transformed in situ into uniform copper@nickel core-shell nanostructures by a self-organized process during low-temperature annealing and immediately sintered under photon irradiation to form copper-nickel alloy patterns on flexible substrates. The complex inks are synthesized within 15 min via a simple mixing process and are particle-free, air-stable, and compatible with large-area screen printing. The manufactured patterns exhibit a high conductivity of 19-67 µΩ·cm, with the value depending on the nickel content, and can maintain high oxidation resistance at 180 °C even when the nickel content is as low as 6 wt %. In addition, the printed copper-nickel alloy patterns exhibit high flexibility as a consequence of the local softening and mechanical anchoring effect between the metal pattern and the flexible substrate, showing strong potential in the additive manufacturing of highly reliable flexible electronics, such as flexible radio-frequency identification (RFID) tags and various wearable sensors.

16.
Phys Rev Lett ; 107(20): 207001, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-22181760

RESUMEN

Macroscopic and robust supercurrents are observed by direct electron transport measurements on a silicon surface reconstruction with In adatoms [Si(111)-(√7 × âˆš3)-In]. The superconducting transition manifests itself as an emergence of the zero resistance state below 2.8 K. I-V characteristics exhibit sharp and hysteretic switching between superconducting and normal states with well-defined critical and retrapping currents. The two-dimensional (2D) critical current density J(2D,c) is estimated to be as high as 1.8 A/m at 1.8 K. The temperature dependence of J(2D,c) indicates that the surface atomic steps play the role of strongly coupled Josephson junctions.

17.
Nanotechnology ; 22(28): 285205, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21659691

RESUMEN

Four-terminal electrical measurement is realized on a microscopic structure in air, without a lithographic process, using a home-built quadruple-scanning-probe force microscope (QSPFM). The QSPFM has four probes whose positions are individually controlled by obtaining images of a sample in the manner of atomic force microscopy (AFM), and uses the probes as contacting electrodes for electrical measurements. A specially arranged tuning fork probe (TFP) is used as a self-detection force sensor to operate each probe in a frequency modulation AFM mode, resulting in simultaneous imaging of the same microscopic feature on an insulator using the four TFPs. Four-terminal electrical measurement is then demonstrated in air by placing each probe electrode in contact with a graphene flake exfoliated on a silicon dioxide film, and the sheet resistance of the flake is measured by the van der Pauw method. The present work shows that the QSPFM has the potential to measure the intrinsic electrical properties of a wide range of microscopic materials in situ without electrode fabrication.

18.
Phys Chem Chem Phys ; 13(11): 4935-41, 2011 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-21293799

RESUMEN

Flat nano-island films prepared by wet-chemical deposition were investigated with attenuated total reflection infrared (ATR-IR) spectroscopy and scanning electron microscopy (SEM) in order to analyze the correlation between film morphology and optical properties. Here we choose Au as representative coinage metal (Au, Ag, Cu) that shows strong structure-dependent surface-enhanced infrared absorption (SEIRA). Infrared spectra of octadecanethiol monolayers on films of different stages of morphologic development show effects that are characteristic for SEIRA, such as enhanced vibrational signals, Fano-type line shape, and adsorbate induced baseline shifts. Their extent was found to be strongly dependent on the structural details and the strongest enhancement occurs at the percolation threshold of the two-dimensional island system. Also films beyond percolation show significant enhancement due to residual nanoholes that are acting as hotspots.


Asunto(s)
Oro/química , Absorción , Alcanos/química , Cobre/química , Nanopartículas del Metal/química , Microscopía Electrónica de Rastreo , Semiconductores , Espectrofotometría Infrarroja , Propiedades de Superficie , Vibración
19.
J Nanosci Nanotechnol ; 11(4): 2829-35, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21776639

RESUMEN

The nanoscale control of reversible chemical reactions, the polymerization and depolymerization between C60 molecules, has been investigated. Using a scanning tunneling microscope (STM), the polymerization and depolymerization can be controlled at designated positions in ultrathin films of C60 molecules. One of the two chemical reactions can be selectively induced by controlling the sample bias voltage (V(s)); the application of negative and positive values of V(s) results in polymerization and depolymerization, respectively. The selectivity between the two chemical reactions becomes extremely high when the thickness of the C60 film increases to more than three molecular layers. We conclude that STM-induced negative and positive electrostatic ionization are responsible for the control of the polymerization and depolymerization, respectively.


Asunto(s)
Cristalización/métodos , Fulerenos/química , Microscopía de Túnel de Rastreo/métodos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
20.
Nat Commun ; 12(1): 4008, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34188085

RESUMEN

The brain's efficient information processing is enabled by the interplay between its neuro-synaptic elements and complex network structure. This work reports on the neuromorphic dynamics of nanowire networks (NWNs), a unique brain-inspired system with synapse-like memristive junctions embedded within a recurrent neural network-like structure. Simulation and experiment elucidate how collective memristive switching gives rise to long-range transport pathways, drastically altering the network's global state via a discontinuous phase transition. The spatio-temporal properties of switching dynamics are found to be consistent with avalanches displaying power-law size and life-time distributions, with exponents obeying the crackling noise relationship, thus satisfying criteria for criticality, as observed in cortical neuronal cultures. Furthermore, NWNs adaptively respond to time varying stimuli, exhibiting diverse dynamics tunable from order to chaos. Dynamical states at the edge-of-chaos are found to optimise information processing for increasingly complex learning tasks. Overall, these results reveal a rich repertoire of emergent, collective neural-like dynamics in NWNs, thus demonstrating the potential for a neuromorphic advantage in information processing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA