Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 84(6): 1149-1157.e7, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38309274

RESUMEN

OCA-B, OCA-T1, and OCA-T2 belong to a family of coactivators that bind to POU transcription factors (TFs) to regulate gene expression in immune cells. Here, we identify IκBζ (encoded by the NFKBIZ gene) as an additional coactivator of POU TFs. Although originally discovered as an inducible regulator of NF-κB, we show here that IκBζ shares a microhomology with OCA proteins and uses this segment to bind to POU TFs and octamer-motif-containing DNA. Our functional experiments suggest that IκBζ requires its interaction with POU TFs to coactivate immune-related genes. This finding is reinforced by epigenomic analysis of MYD88L265P-mutant lymphoma cells, which revealed colocalization of IκBζ with the POU TF OCT2 and NF-κB:p50 at hundreds of DNA elements harboring octamer and κB motifs. These results suggest that IκBζ is a transcriptional coactivator that can amplify and integrate the output of NF-κB and POU TFs at inducible genes in immune cells.


Asunto(s)
ADN , FN-kappa B , FN-kappa B/genética , FN-kappa B/metabolismo , Regiones Promotoras Genéticas , ADN/genética , ADN/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(36): e2303859120, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37639593

RESUMEN

Recurrent chromosomal rearrangements found in rhabdomyosarcoma (RMS) produce the PAX3-FOXO1 fusion protein, which is an oncogenic driver and a dependency in this disease. One important function of PAX3-FOXO1 is to arrest myogenic differentiation, which is linked to the ability of RMS cells to gain an unlimited proliferation potential. Here, we developed a phenotypic screening strategy for identifying factors that collaborate with PAX3-FOXO1 to block myo-differentiation in RMS. Unlike most genes evaluated in our screen, we found that loss of any of the three subunits of the Nuclear Factor Y (NF-Y) complex leads to a myo-differentiation phenotype that resembles the effect of inactivating PAX3-FOXO1. While the transcriptomes of NF-Y- and PAX3-FOXO1-deficient RMS cells bear remarkable similarity to one another, we found that these two transcription factors occupy nonoverlapping sites along the genome: NF-Y preferentially occupies promoters, whereas PAX3-FOXO1 primarily binds to distal enhancers. By integrating multiple functional approaches, we map the PAX3 promoter as the point of intersection between these two regulators. We show that NF-Y occupies CCAAT motifs present upstream of PAX3 to function as a transcriptional activator of PAX3-FOXO1 expression in RMS. These findings reveal a critical upstream role of NF-Y in the oncogenic PAX3-FOXO1 pathway, highlighting how a broadly essential transcription factor can perform tumor-specific roles in governing cellular state.


Asunto(s)
Rabdomiosarcoma , Factor de Unión a CCAAT/genética , Diferenciación Celular/genética , Aberraciones Cromosómicas , Rabdomiosarcoma/genética , Factores de Transcripción
3.
bioRxiv ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38586040

RESUMEN

Single-cell genomics technologies have accelerated our understanding of cell-state heterogeneity in diverse contexts. Although single-cell RNA sequencing (scRNA-seq) identifies many rare populations of interest that express specific marker transcript combinations, traditional flow sorting limits our ability to enrich these populations for further profiling, including requiring cell surface markers with high-fidelity antibodies. Additionally, many single-cell studies require the isolation of nuclei from tissue, eliminating the ability to enrich learned rare cell states based on extranuclear protein markers. To address these limitations, we describe Programmable Enrichment via RNA Flow-FISH by sequencing (PERFF-seq), a scalable assay that enables scRNA-seq profiling of subpopulations from complex cellular mixtures defined by the presence or absence of specific RNA transcripts. Across immune populations (n = 141,227 cells) and fresh-frozen and formalin-fixed paraffin-embedded brain tissue (n = 29,522 nuclei), we demonstrate the sorting logic that can be used to enrich for cell populations via RNA-based cytometry followed by high-throughput scRNA-seq. Our approach provides a rational, programmable method for studying rare populations identified by one or more marker transcripts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA