Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 96(3): e0150421, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34851148

RESUMEN

In the age of COVID, nucleic acid vaccines have garnered much attention, at least in part, because of the simplicity of construction, production, and flexibility to adjust and adapt to an evolving outbreak. Orthopoxviruses remain a threat on multiple fronts, especially as emerging zoonoses. In response, we developed a DNA vaccine, termed 4pox, that protected nonhuman primates against monkeypox virus (MPXV)-induced severe disease. Here, we examined the protective efficacy of the 4pox DNA vaccine delivered by intramuscular (i.m.) electroporation (EP) in rabbits challenged with aerosolized rabbitpox virus (RPXV), a model that recapitulates the respiratory route of exposure and low dose associated with natural smallpox exposure in humans. We found that 4pox-vaccinated rabbits developed immunogen-specific antibodies, including neutralizing antibodies, and did not develop any clinical disease, indicating protection against aerosolized RPXV. In contrast, unvaccinated animals developed significant signs of disease, including lesions, and were euthanized. These findings demonstrate that an unformulated, nonadjuvanted DNA vaccine delivered i.m. can protect against an aerosol exposure. IMPORTANCE The eradication of smallpox and subsequent cessation of vaccination have left a majority of the population susceptible to variola virus or other emerging poxviruses. This is exemplified by human monkeypox, as evidenced by the increase in reported endemic and imported cases over the past decades. Therefore, a malleable vaccine technology that can be mass produced and does not require complex conditions for distribution and storage is sought. Herein, we show that a DNA vaccine, in the absence of a specialized formulation or adjuvant, can protect against a lethal aerosol insult of rabbitpox virus.


Asunto(s)
Vacunación Basada en Ácidos Nucleicos/inmunología , Orthopoxvirus/inmunología , Infecciones por Poxviridae/prevención & control , Virus Vaccinia/inmunología , Vaccinia/prevención & control , Proteínas Virales/inmunología , Vacunas Virales/inmunología , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Relación Dosis-Respuesta Inmunológica , Electroporación , Femenino , Inmunización/métodos , Inmunogenicidad Vacunal , Activación de Linfocitos/inmunología , Vacunación Basada en Ácidos Nucleicos/administración & dosificación , Oligodesoxirribonucleótidos/administración & dosificación , Oligodesoxirribonucleótidos/inmunología , Conejos , Vacunas de ADN/inmunología , Virus Vaccinia/genética , Vacunas Virales/administración & dosificación
2.
J Immunol ; 204(3): 611-621, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31871024

RESUMEN

Coxiella burnetii is an obligate intracellular bacterium and the causative agent of Q fever. C. burnetii is considered a potential bioterrorism agent because of its low infectious dose; resistance to heat, drying, and common disinfectants; and lack of prophylactic therapies. Q-Vax, a formalin-inactivated whole-bacteria vaccine, is currently the only prophylactic measure that is protective against C. burnetii infections but is not U.S. Food and Drug Administration approved. To overcome the safety concerns associated with the whole-bacteria vaccine, we sought to generate and evaluate recombinant protein subunit vaccines against C. burnetii To accomplish this, we formulated C. burnetii Ags with a novel TLR triagonist adjuvant platform, which used combinatorial chemistry to link three different TLR agonists together to form one adjuvanting complex. We evaluated the immunomodulatory activity of a panel of TLR triagonist adjuvants and found that they elicited unique Ag-specific immune responses both in vitro and in vivo. We evaluated our top candidates in a live C. burnetii aerosol challenge model in C56BL/6 mice and found that several of our novel vaccine formulations conferred varying levels of protection to the challenged animals compared with sham immunized mice, although none of our candidates were as protective as the commercial vaccine across all protection criteria that were analyzed. Our findings characterize a novel adjuvant platform and offer an alternative approach to generating protective and effective vaccines against C. burnetii.


Asunto(s)
Vacunas Bacterianas/inmunología , Coxiella burnetii/fisiología , Fiebre Q/inmunología , Receptores Toll-Like/agonistas , Adyuvantes Inmunológicos , Animales , Vacunas Bacterianas/síntesis química , Técnicas Químicas Combinatorias , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunidad , Inmunogenicidad Vacunal , Ratones , Ratones Endogámicos C57BL , Vacunas de Subunidad
3.
Emerg Infect Dis ; 26(12): 2835-2843, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32744989

RESUMEN

Emerging coronaviruses are a global public health threat because of the potential for person-to-person transmission and high mortality rates. Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012, causing lethal respiratory disease in ¼35% of cases. Primate models of coronavirus disease are needed to support development of therapeutics, but few models exist that recapitulate severe disease. For initial development of a MERS-CoV primate model, 12 African green monkeys were exposed to 103, 104, or 105 PFU target doses of aerosolized MERS-CoV. We observed a dose-dependent increase of respiratory disease signs, although all 12 monkeys survived for the 28-day duration of the study. This study describes dose-dependent effects of MERS-CoV infection of primates and uses a route of infection with potential relevance to MERS-CoV transmission. Aerosol exposure of African green monkeys might provide a platform approach for the development of primate models of novel coronavirus diseases.


Asunto(s)
Enfermedades Transmisibles Emergentes/virología , Infecciones por Coronavirus/virología , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Animales , COVID-19 , Chlorocebus aethiops/virología , Infecciones por Coronavirus/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , SARS-CoV-2/patogenicidad
4.
Emerg Infect Dis ; 26(9)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32568661

RESUMEN

We aerosolized severe acute respiratory syndrome coronavirus 2 and determined that its dynamic aerosol efficiency surpassed those of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome. Although we performed experiment only once across several laboratories, our findings suggest retained infectivity and virion integrity for up to 16 hours in respirable-sized aerosols.


Asunto(s)
Aerosoles/aislamiento & purificación , Betacoronavirus/aislamiento & purificación , Infecciones por Coronavirus/transmisión , Transmisión de Enfermedad Infecciosa , Neumonía Viral/transmisión , Suspensiones/aislamiento & purificación , COVID-19 , Infecciones por Coronavirus/virología , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/aislamiento & purificación , Pandemias , Neumonía Viral/virología , SARS-CoV-2
5.
Vet Pathol ; 55(6): 905-915, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30071801

RESUMEN

Coccidioidomycosis in nonhuman primates has been sporadically reported in the literature. This study describes 22 cases of coccidioidomycosis in nonhuman primates within an endemic region, and 79 cases of coccidioidomycosis from the veterinary literature are also reviewed. The 22 cases included baboons ( n = 10), macaques ( n = 9), and chimpanzees ( n = 3). The majority died or were euthanized following episodes of dyspnea, lethargy, or neurologic and locomotion abnormalities. The lungs were most frequently involved followed by the vertebral column and abdominal organs. Microscopic examination revealed granulomatous inflammation accompanied by fungal spherules variably undergoing endosporulation. Baboons represented a large number of cases presented here and had a unique presentation with lesions in bone or thoracic organs, but none had both intrathoracic and extrathoracic lesions. Although noted in 3 cases in the literature, cutaneous infections were not observed among the 22 contemporaneous cases. Similarly, subclinical infections were only rarely observed (2 cases). This case series and review of the literature illustrates that coccidioidomycosis in nonhuman primates reflects human disease with a varied spectrum of presentations from localized lesions to disseminated disease.


Asunto(s)
Coccidioidomicosis/veterinaria , Enfermedades de los Primates/patología , Animales , Coccidioidomicosis/microbiología , Coccidioidomicosis/patología , Femenino , Pulmón/patología , Macaca/microbiología , Masculino , Microscopía Electrónica/veterinaria , Pan troglodytes/microbiología , Papio/microbiología , Reacción en Cadena de la Polimerasa/veterinaria , Enfermedades de los Primates/microbiología
6.
Emerg Infect Dis ; 23(8): 1274-1281, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28548637

RESUMEN

Unprotected sexual intercourse between persons residing in or traveling from regions with Zika virus transmission is a risk factor for infection. To model risk for infection after sexual intercourse, we inoculated rhesus and cynomolgus macaques with Zika virus by intravaginal or intrarectal routes. In macaques inoculated intravaginally, we detected viremia and virus RNA in 50% of macaques, followed by seroconversion. In macaques inoculated intrarectally, we detected viremia, virus RNA, or both, in 100% of both species, followed by seroconversion. The magnitude and duration of infectious virus in the blood of macaques suggest humans infected with Zika virus through sexual transmission will likely generate viremias sufficient to infect competent mosquito vectors. Our results indicate that transmission of Zika virus by sexual intercourse might serve as a virus maintenance mechanism in the absence of mosquito-to-human transmission and could increase the probability of establishment and spread of Zika virus in regions where this virus is not present.


Asunto(s)
Macaca fascicularis , Macaca mulatta , Infección por el Virus Zika/virología , Virus Zika/fisiología , Animales , Femenino , Masculino , Vagina , Replicación Viral , Esparcimiento de Virus , Infección por el Virus Zika/transmisión
7.
Antimicrob Agents Chemother ; 59(4): 2206-14, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25645849

RESUMEN

Inhalational anthrax is characterized by extensive bacteremia and toxemia as well as nonspecific to mild flu-like symptoms, until the onset of hypotension, shock, and mortality. Without treatment, the mortality rate approaches 100%. Antibiotic treatment is not always effective, and alternative treatments are needed, such as monotherapy for antibiotic-resistant inhalational anthrax or as an adjunct therapy in combination with antibiotics. The Bacillus anthracis antitoxin monoclonal antibody (MAb) ETI-204 is a high-affinity chimeric deimmunized antibody which targets the anthrax toxin protective antigen (PA). In this study, a partial protection New Zealand White (NZW) rabbit model was used to evaluate the protective efficacy of the adjunct therapy with the MAb. Following detection of PA in the blood, NZW rabbits were administered either an antibiotic (doxycycline) alone or the antibiotic in conjunction with ETI-204. Survival was evaluated to compare the efficacy of the combination adjunct therapy with that of an antibiotic alone in treating inhalational anthrax. Overall, the results from this study indicate that a subtherapeutic regimen consisting of an antibiotic in combination with an anti-PA MAb results in increased survival compared to the antibiotic alone and would provide an effective therapeutic strategy against symptomatic anthrax in nonvaccinated individuals.


Asunto(s)
Carbunco/tratamiento farmacológico , Antibacterianos/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Animales , Carbunco/microbiología , Carbunco/patología , Antitoxinas/uso terapéutico , Bacillus anthracis , Bacteriemia/microbiología , Encéfalo/patología , Doxiciclina/uso terapéutico , Femenino , Exposición por Inhalación , Masculino , Conejos , Esporas Bacterianas , Análisis de Supervivencia
8.
Nat Med ; 11(7): 740-7, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15951823

RESUMEN

Vaccination with live vaccinia virus affords long-lasting protection against variola virus, the agent of smallpox. Its mode of protection in humans, however, has not been clearly defined. Here we report that vaccinia-specific B-cell responses are essential for protection of macaques from monkeypox virus, a variola virus ortholog. Antibody-mediated depletion of B cells, but not CD4+ or CD8+ T cells, abrogated vaccine-induced protection from a lethal intravenous challenge with monkeypox virus. In addition, passive transfer of human vaccinia-neutralizing antibodies protected nonimmunized macaques from severe disease. Thus, vaccines able to induce long-lasting protective antibody responses may constitute realistic alternatives to the currently available smallpox vaccine (Dryvax).


Asunto(s)
Linfocitos B/inmunología , Monkeypox virus/inmunología , Mpox/inmunología , Vacuna contra Viruela/inmunología , Animales , Anticuerpos/inmunología , Formación de Anticuerpos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica , Macaca mulatta , Mpox/prevención & control
9.
Nat Microbiol ; 7(12): 1980-1986, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36253513

RESUMEN

Close contact through sexual activity has been associated with the spread of monkeypox virus (MPXV) in the ongoing, global 2022 epidemic. However, it remains unclear whether MPXV replicates in the testes or is transmitted via semen to produce an active infection. We carried out a retrospective analysis of MPXV-infected crab-eating macaque archival tissue samples from acute and convalescent phases of infection of clade I or clade II MPXV using immunostaining and RNA in situ hybridization. We detected MPXV in interstitial cells and seminiferous tubules of testes as well as epididymal lumina, which are the sites of sperm production and maturation. We also detected inflammation and necrosis during the acute phase of the disease by histological analysis. Finally, we found that MPXV was cleared from most organs during convalescence, including healed skin lesions, but could be detected for up to 37 d post-exposure in the testes of convalescent macaques. Our findings highlight the potential for sexual transmission of MPXV in humans.


Asunto(s)
Monkeypox virus , Mpox , Humanos , Animales , Masculino , Mpox/epidemiología , Testículo/patología , Estudios Retrospectivos , Modelos Animales de Enfermedad , Semen , Macaca fascicularis , Sobrevivientes
10.
Viruses ; 14(5)2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35632755

RESUMEN

The emergence of SARS-CoV-2 and the subsequent pandemic has highlighted the need for animal models that faithfully replicate the salient features of COVID-19 disease in humans. These models are necessary for the rapid selection, testing, and evaluation of potential medical countermeasures. Here, we performed a direct comparison of two distinct routes of SARS-CoV-2 exposure-combined intratracheal/intranasal and small particle aerosol-in two nonhuman primate species, rhesus and cynomolgus macaques. While all four experimental groups displayed very few outward clinical signs, evidence of mild to moderate respiratory disease was present on radiographs and at necropsy. Cynomolgus macaques exposed via the aerosol route also developed the most consistent fever responses and had the most severe respiratory disease and pathology. This study demonstrates that while all four models produced suitable representations of mild COVID-like illness, aerosol exposure of cynomolgus macaques to SARS-CoV-2 produced the most severe disease, which may provide additional clinical endpoints for evaluating therapeutics and vaccines.


Asunto(s)
COVID-19 , Aerosoles , Animales , Modelos Animales de Enfermedad , Macaca fascicularis , SARS-CoV-2 , Índice de Severidad de la Enfermedad
11.
Vaccines (Basel) ; 10(5)2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35632473

RESUMEN

The COVID-19 pandemic has had a staggering impact on social, economic, and public health systems worldwide. Vaccine development and mobilization against SARS-CoV-2 (the etiologic agent of COVID-19) has been rapid. However, novel strategies are still necessary to slow the pandemic, and this includes new approaches to vaccine development and/or delivery that will improve vaccination compliance and demonstrate efficacy against emerging variants. Here, we report on the immunogenicity and efficacy of a SARS-CoV-2 vaccine comprising stabilized, pre-fusion spike protein trimers displayed on a ferritin nanoparticle (SpFN) adjuvanted with either conventional aluminum hydroxide or the Army Liposomal Formulation QS-21 (ALFQ) in a cynomolgus macaque COVID-19 model. Vaccination resulted in robust cell-mediated and humoral responses and a significant reduction in lung lesions following SARS-CoV-2 infection. The strength of the immune response suggests that dose sparing through reduced or single dosing in primates may be possible with this vaccine. Overall, the data support further evaluation of SpFN as a SARS-CoV-2 protein-based vaccine candidate with attention to fractional dosing and schedule optimization.

12.
J Gen Virol ; 92(Pt 1): 31-5, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20965981

RESUMEN

Smallpox is a human disease caused by infection with variola virus, a member of the genus Orthopoxvirus. Although smallpox has been eradicated, concern that it might be reintroduced through bioterrorism has therefore led to intensive efforts to develop new vaccines and antiviral drugs against this disease. Because these vaccines and therapeutics cannot be tested in human trials, it is necessary to test such medical countermeasures in different animal models. Although several orthopoxviruses cause disease in laboratory animals, only rabbitpox virus (RPXV) infection of rabbits shows patterns of natural airborne transmission similar to smallpox. Studies have shown that a smallpox-like disease can be produced in rabbits in a controlled fashion through exposure to a small-particle RPXV aerosol, and rabbitpox spreads from animal to animal by the airborne route in a laboratory setting. This model can therefore be utilized to test drugs and vaccines against variola virus and other aerosolized orthopoxviruses.


Asunto(s)
Infecciones por Poxviridae/veterinaria , Enfermedades de los Roedores/transmisión , Enfermedades de los Roedores/virología , Virus Vaccinia/aislamiento & purificación , Microbiología del Aire , Animales , Modelos Animales de Enfermedad , Humanos , Infecciones por Poxviridae/transmisión , Conejos
13.
Pathogens ; 10(5)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068262

RESUMEN

Tularemia is a severe, zoonotic infection caused by the Gram-negative bacterium Francisella tularensis. Inhalation results in a rapid, severe bacterial pneumonia and sepsis, which can be lethal. Because the cynomolgus macaque is the accepted nonhuman primate model for tularemia, we conducted a natural history study of pneumonic tularemia by exposing macaques to target inhaled doses of 50, 500, or 5000 colony forming units (CFU) of F. tularensis subsp. tularensis SCHU S4. Two animals within the 50 CFU group (calculated doses of 10 and 11 CFU) survived the challenge, while the remainder succumbed to infection. Exposure of cynomolgus macaques to aerosolized SCHU S4 resulted in fever, anorexia, increased white blood cell counts, lymphopenia, thrombocytopenia, increased liver enzymes, alterations in electrocardiogram (ECG), and pathological changes typical of infection with F. tularensis, regardless of the challenge dose. Blood pressure dropped during the febrile phase, particularly as temperature began to drop and macaques succumbed to the disease. ECG analysis indicated that in 33% of the macaques, heart rate was not elevated during the febrile phase (Faget's sign; pulse-temperature disassociation), which has been reported in a similar percentage of human cases. These results indicated that infection of cynomolgus macaques with aerosolized F. tularensis results in similar disease progression and outcome as seen in humans, and that cynomolgus macaques are a reliable animal model to test medical countermeasures against aerosolized F. tularensis.

14.
PLoS One ; 16(7): e0252874, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34214118

RESUMEN

Filoviruses (Family Filoviridae genera Ebolavirus and Marburgvirus) are negative-stranded RNA viruses that cause severe health effects in humans and non-human primates, including death. Except in outbreak settings, vaccines and other medical countermeasures against Ebola virus (EBOV) will require testing under the FDA Animal Rule. Multiple vaccine candidates have been evaluated using cynomolgus monkeys (CM) exposed to EBOV Kikwit strain. To the best of our knowledge, however, animal model development data supporting the use of CM in vaccine research have not been submitted to the FDA. This study describes a large CM database (122 CM, 62 female and 60 male, age 2 to 9 years) and demonstrates the consistency of the CM model through time to death models and descriptive statistics. CMs were exposed to EBOV doses of 0.1 to 100,000 PFU in 33 studies conducted at three Animal Biosafety Level 4 facilities, by three exposure routes. Time to death was modeled using Cox proportional hazards models with a frailty term that incorporated study-to-study variability. Despite significant differences attributed to exposure variables, all CMs exposed to the 100 to 1,000 pfu doses commonly used in vaccine studies died or met euthanasia criteria within 21 days of exposure, median 7 days, 93% between 5 and 12 days of exposure. Moderate clinical signs were observed 4 to 5 days after exposure and preceded death or euthanasia by approximately one day. Viremia was detected within a few days of infection. Hematology indices were indicative of viremia and the propensity for hemorrhage with progression of Ebola viremia. Changes associated with coagulation parameters and platelets were consistent with coagulation disruption. Changes in leukocyte profiles were indicative of an acute inflammatory response. Increased liver enzymes were observed shortly after exposure. Taken together, these factors suggest that the cynomolgus monkey is a reliable animal model for human disease.


Asunto(s)
Ebolavirus/fisiología , Fiebre Hemorrágica Ebola , Animales , Modelos Animales de Enfermedad , Brotes de Enfermedades , Femenino , Macaca fascicularis , Masculino , Reproducibilidad de los Resultados , Carga Viral
15.
PLoS One ; 16(2): e0246366, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33529233

RESUMEN

Airborne transmission is predicted to be a prevalent route of human exposure with SARS-CoV-2. Aside from African green monkeys, nonhuman primate models that replicate airborne transmission of SARS-CoV-2 have not been investigated. A comparative evaluation of COVID-19 in African green monkeys, rhesus macaques, and cynomolgus macaques following airborne exposure to SARS-CoV-2 was performed to determine critical disease parameters associated with disease progression, and establish correlations between primate and human COVID-19. Respiratory abnormalities and viral shedding were noted for all animals, indicating successful infection. Cynomolgus macaques developed fever, and thrombocytopenia was measured for African green monkeys and rhesus macaques. Type II pneumocyte hyperplasia and alveolar fibrosis were more frequently observed in lung tissue from cynomolgus macaques and African green monkeys. The data indicate that, in addition to African green monkeys, macaques can be successfully infected by airborne SARS-CoV-2, providing viable macaque natural transmission models for medical countermeasure evaluation.


Asunto(s)
COVID-19/fisiopatología , Modelos Animales de Enfermedad , Macaca mulatta , SARS-CoV-2/fisiología , Animales , COVID-19/patología , COVID-19/transmisión , Chlorocebus aethiops , Transmisión de Enfermedad Infecciosa , Femenino , Pulmón/patología , Macaca fascicularis , Masculino , Esparcimiento de Virus
16.
PLoS Negl Trop Dis ; 14(6): e0008107, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32569276

RESUMEN

Mosquito-borne and sexual transmission of Zika virus (ZIKV), a TORCH pathogen, recently initiated a series of large epidemics throughout the Tropics. Animal models are necessary to determine transmission risk and study pathogenesis, as well screen antivirals and vaccine candidates. In this study, we modeled mosquito and sexual transmission of ZIKV in the African green monkey (AGM). Following subcutaneous, intravaginal or intrarectal inoculation of AGMs with ZIKV, we determined the transmission potential and infection dynamics of the virus. AGMs inoculated by all three transmission routes exhibited viremia and viral shedding followed by strong virus neutralizing antibody responses, in the absence of clinical illness. All four of the subcutaneously inoculated AGMs became infected (mean peak viremia: 2.9 log10 PFU/mL, mean duration: 4.3 days) and vRNA was detected in their oral swabs, with infectious virus being detected in a subset of these specimens. Although all four of the intravaginally inoculated AGMs developed virus neutralizing antibody responses, only three had detectable viremia (mean peak viremia: 4.0 log10 PFU/mL, mean duration: 3.0 days). These three AGMs also had vRNA and infectious virus detected in both oral and vaginal swabs. Two of the four intrarectally inoculated AGMs became infected (mean peak viremia: 3.8 log10 PFU/mL, mean duration: 3.5 days). vRNA was detected in oral swabs collected from both of these infected AGMs, and infectious virus was detected in an oral swab from one of these AGMs. Notably, vRNA and infectious virus were detected in vaginal swabs collected from the infected female AGM (peak viral load: 7.5 log10 copies/mL, peak titer: 3.8 log10 PFU/mL, range of detection: 5-21 days post infection). Abnormal clinical chemistry and hematology results were detected and acute lymphadenopathy was observed in some AGMs. Infection dynamics in all three AGM ZIKV models are similar to those reported in the majority of human ZIKV infections. Our results indicate that the AGM can be used as a surrogate to model mosquito or sexual ZIKV transmission and infection. Furthermore, our results suggest that AGMs are likely involved in the enzootic maintenance and amplification cycle of ZIKV.


Asunto(s)
Modelos Animales de Enfermedad , Transmisión de Enfermedad Infecciosa , Enfermedades Virales de Transmisión Sexual/transmisión , Enfermedades Transmitidas por Vectores/transmisión , Infección por el Virus Zika/transmisión , Animales , Chlorocebus aethiops , Culicidae , Femenino , Masculino
17.
Antiviral Res ; 79(2): 121-7, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18479761

RESUMEN

Orthopoxviruses, such as variola and monkeypox viruses, can cause severe disease in humans when delivered by the aerosol route, and thus represent significant threats to both military and civilian populations. Currently, there are no antiviral therapies approved by the U.S. Food and Drug Administration (FDA) to treat smallpox or monkeypox infection. In this study, we showed that administration of the antiviral compound ST-246 to rabbits by oral gavage, once daily for 14 days beginning 1h postexposure (p.e.), resulted in 100% survival in a lethal aerosolized rabbitpox model used as a surrogate for smallpox. Furthermore, efficacy of delayed treatment with ST-246 was evaluated by beginning treatment on days 1, 2, 3, and 4 p.e. Although a limited number of rabbits showed less severe signs of the rabbitpox disease from the day 1 and day 2 p.e. treatment groups, their illness resolved very quickly, and the survival rates for these group of rabbits were 88% and 100%, respectively. But when the treatment was started on days 3 or 4 p.e., survival was 67% and 33%, respectively. This work suggests that ST-246 is a very potent antiviral compound against aerosolized rabbitpox in rabbits and should be investigated for further development for all orthopoxvirus diseases.


Asunto(s)
Antivirales/uso terapéutico , Benzamidas/uso terapéutico , Quimioprevención/métodos , Isoindoles/uso terapéutico , Virus Vaccinia/efectos de los fármacos , Vaccinia/prevención & control , Administración Oral , Aerosoles , Animales , Antivirales/administración & dosificación , Benzamidas/administración & dosificación , Femenino , Isoindoles/administración & dosificación , Pulmón/patología , Conejos , Análisis de Supervivencia , Factores de Tiempo
18.
Toxicon ; 150: 235-250, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29902540

RESUMEN

Preparations of palytoxin (PLTX, derived from Japanese Palythoa tuberculosa) and the congeners 42-OH-PLTX (from Hawaiian P. toxica) and ovatoxin-a (isolated from a Japanese strain of Ostreopsis ovata), as well as a 50:50 mixture of PLTX and 42-OH-PLTX derived from Hawaiian P. tuberculosa were characterized as to their concentration, composition, in-vitro potency and interaction with an anti-PLTX monoclonal antibody (mAb), after which they were evaluated for lethality and tissue histopathology after intraperitoneal (IP) and aerosol administration to rats. Once each preparation was characterized as to its toxin composition by LC-HRMS and normalized to a total PLTX/OVTX concentration using HPLC-UV, all four preparations showed similar potency towards mouse erythrocytes in the erythrocyte hemolysis assay and interactions with the anti-PLTX mAb. The IP LD50 values derived from these experiments (0.92, 1.93, 1.81 and 3.26 µg/kg, for the 50:50 mix, 42-OH-PLTX, PLTX, and ovatoxin-a, respectively) were consistent with published values, although some differences from the published literature were seen. The aerosol LD50 values (0.063, 0.045, 0.041, and 0.031 µg/kg for the 50:50 mix, 42-OH PLTX, PLTX, and ovatoxin-a, respectively) confirmed the exquisite potency of PLTX suggested by the literature. The tissue histopathology of the different toxin preparations by IP and aerosol administration were similar, albeit with some differences. Most commonly affected tissues were the lungs, liver, heart, salivary glands, and adrenal glands. Despite some differences, these results suggest commonalities in potency and mechanism of action among these PLTX congeners.


Asunto(s)
Acrilamidas/química , Acrilamidas/toxicidad , Acrilamidas/administración & dosificación , Acrilamidas/metabolismo , Aerosoles , Animales , Venenos de Cnidarios , Dinoflagelados/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Inyecciones Intraperitoneales , Toxinas Marinas/administración & dosificación , Toxinas Marinas/química , Toxinas Marinas/toxicidad , Estructura Molecular , Ratas , Ratas Endogámicas F344
19.
Antiviral Res ; 73(2): 118-25, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16987555

RESUMEN

The fully glycosylated human omega interferon produced from CHO-SS cells (glycosylated IFN-omega) has been shown to be well-tolerated in man and to induce a sustained virologic response in patients infected with hepatitis C virus (HCV). We examined the antiviral activity of glycosylated IFN-omega and various human IFNs (IFN-alpha, -beta, -gamma and non-glycosylated bacterial (Escherichia coli) recombinant IFN-omega (non-glycosylated IFN-omega)) against HCV RNA replicons and several viruses related to HCV. Since none of the IFNs displayed cytotoxicity we compared their activities based on the effective concentration of the IFN that inhibited virus growth by 50% (EC50). Glycosylated IFN-omega was found to be the most potent antiviral agent of all the IFNs tested against bovine viral diarrhea virus (BVDV), yellow fever virus and West Nile virus. With HCV RNA replicons, non-glycosylated IFN-omega was comparable in activity to IFN-alpha while glycosylated IFN-omega was markedly more potent, indicating that glycosylation has an important effect on its activity. Drug combination analysis of glycosylated IFN-omega+ribavirin (RBV) in BVDV showed a synergy of antiviral effects similar to IFN-alpha+RBV, as well as a unique antagonism of RBV cytotoxic effects by glycosylated IFN-omega. Transcription factor (TF) profiling indicated that IFN-alpha or glycosylated IFN-omega treatment upregulated the same 17 TFs. IFN-alpha and glycosylated IFN-omega also upregulated 9 and 40 additional unique TFs, respectively. The differences in the expression of these TFs were modest, but statistically significantly different for eight of the TFs that were upregulated exclusively by glycosylated IFN-omega. The activation of these additional TFs by glycosylated IFN-omega might contribute to its high potency.


Asunto(s)
Antivirales/farmacología , Hepacivirus/genética , Interferón Tipo I/farmacología , Interferones/farmacología , Replicón/efectos de los fármacos , Animales , Antivirales/inmunología , Células CHO , Bovinos , Chlorocebus aethiops , Cricetinae , Cricetulus , Combinación de Medicamentos , Humanos , Interferón Tipo I/inmunología , Interferones/inmunología , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/farmacología , Replicón/genética , Factores de Transcripción/genética , Células Vero
20.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA